标签:
auto_ptr 类可以用于管理由 new 分配的单个对象,但是无法管理动态分配的数组(我们通常不会使用数组,而是使用 vector 代替数组)。auto_ptr 在拷贝和赋值的时候有不寻常的行为,因此 auto_ptrs 不能被保存在 stl 的容器中。当 auto_ptr 离开了自己的作用域或者被销毁,由 auto_ptr 管理的对象也会被销毁。
// 示例 1(b): 安全代码, 使用了auto_ptr #include <memory> void f() { auto_ptr<T> pt( new T ); ..... } // 当pt出了作用域时析构函数被调用,从而对象被自动删除
现在代码不会泄漏T类型的对象,不管这个函数是正常退出还是抛出了异常,因为pt的析构函数总是会在出栈时被调用,清理会自动进行。
最后,使用一个auto_ptr就像使用一个内建的指针一样容易,而且如果想要手动“撤销”资源的所有权,我们只要调用release().
// 示例 2: 使用一个 auto_ptr #include <memory> void g() { T* pt1 = new T; // 现在,我们有了一个分配好的对象 auto_ptr<T> auto_pt2( pt1 ); // 将所有权传给了一个auto_ptr对象,auto_pt2 指向了 pt1 // 使用auto_ptr就像我们以前使用简单指针一样 auto_pt2 = 12; // 就像 "*pt1 = 12;" auto_pt2->SomeFunc(); // 就像 "pt1->SomeFunc();" // 用get()来获得指针的值 assert( pt1 == auto_pt2.get() ); // 二者一样 // 用release()来撤销所有权, auto_pt2 把保存的指针地址给了pt3, 而自己指向了NUll。 T* pt3 = auto_pt2.release(); // // 自己删除这个对象,因为现在没有任何auto_ptr拥有这个对象 delete pt3; } // pt2不再拥有任何指针,所以不要试图删除它...ok,不要重复删除
最后,我们可以使用auto_ptr的reset()函数来重置auto_ptr使之拥有另一个对象。如果这个auto_ptr已经拥有了一个对象,那么,它会先删除已经拥有的对象,因此调用reset()就如同销毁这个auto_ptr,然后新建一个并拥有一个新对象:
// 示例 3: 使用reset() #include <memory> void h() { auto_ptr<T> pt( new T(1) ); pt.reset( new T(2) ); //即pt会首先delete pt目前指向的地址(new T(1)得到的地址), //然后再指向new T(2)分配的地址 } // 最后,pt出了作用域,第二个T也被自动删除了
boost::scoped_ptr和std::auto_ptr非常类似,是一个简单的智能指针,它能够保证在离开作用域后对象被自动释放。下列代码演示了该指针的基本应用:
#include <string> #include <iostream> #include <boost/scoped_ptr.hpp> class implementation { public: ~implementation() { std::cout <<"destroying implementation\n"; } void do_something() { std::cout << "did something\n"; } }; void test() { boost::scoped_ptr<implementation> impl(new implementation()); impl->do_something(); } void main() { std::cout<<"Test Begin ... \n"; test(); std::cout<<"Test End.\n"; }
该代码的输出结果是:
Test Begin ...
did something
destroying implementation
Test End.
可以看到:当implementation类离其开impl作用域的时候,会被自动删除,这样就会避免由于忘记手动调用delete而造成内存泄漏了。
boost::scoped_ptr的实现和std::auto_ptr非常类似,都是利用了一个栈上的对象去管理一个堆上的对象,从而使得堆上的对象随着栈上的对象销毁时自动删除。不同的是,boost::scoped_ptr有着更严格的使用限制——不能拷贝。这就意味着:boost::scoped_ptr指针是不能转换其所有权的
(1) 不能转换所有权
boost::scoped_ptr所管理的对象生命周期仅仅局限于一个区间(该指针所在的"{}"之间),无法传到区间之外,这就意味着boost::scoped_ptr对象是不能作为函数的返回值的(std::auto_ptr可以)。
(2) 不能共享所有权
这点和std::auto_ptr类似。这个特点一方面使得该指针简单易用。另一方面也造成了功能的薄弱——不能用于stl的容器中。
(3) 不能用于管理数组对象
由于boost::scoped_ptr是通过 delete来删除所管理对象的,而数组对象必须通过 deletep[]来删除,因此boost::scoped_ptr是不能管理数组对象的,如果要管理数组对象需要使用boost::scoped_array类。
成员函数 |
功能 |
operator*() |
以引用的形式访问所管理的对象的成员 |
operator->() |
以指针的形式访问所管理的对象的成员 |
get() |
释放所管理的对象,管理另外一个对象 |
swap(scoped_ptr& b) |
交换两个boost::scoped_ptr管理的对象 |
下列测试代码演示了这些功能函数的基本使用方法。
#include <string> #include <iostream> #include <boost/scoped_ptr.hpp> #include <boost/scoped_array.hpp> #include <boost/config.hpp> #include <boost/detail/lightweight_test.hpp> void test() { // test scoped_ptr with a built-in type long * lp = new long; boost::scoped_ptr<long> sp ( lp ); BOOST_TEST( sp.get() == lp ); BOOST_TEST( lp == sp.get() ); BOOST_TEST( &*sp == lp ); *sp = 1234568901L; BOOST_TEST( *sp == 1234568901L ); BOOST_TEST( *lp == 1234568901L ); long * lp2 = new long; boost::scoped_ptr<long> sp2 ( lp2 ); sp.swap(sp2); BOOST_TEST( sp.get() == lp2 ); BOOST_TEST( sp2.get() == lp ); sp.reset(NULL); BOOST_TEST( sp.get() == NULL ); } void main() { test(); }
boost::scoped_ptr和std::auto_ptr的功能和操作都非常类似,如何在他们之间选取取决于是否需要转移所管理的对象的所有权(如是否需要作为函数的返回值)。如果没有这个需要的话,大可以使用boost::scoped_ptr,让编译器来进行更严格的检查,来发现一些不正确的赋值操作。
boost::scoped_ptr虽然简单易用,但它不能共享所有权的特性却大大限制了其使用范围,而boost::shared_ptr可以解决这一局限。顾名思义,boost::shared_ptr是可以共享所有权的智能指针,首先让我们通过一个例子看看它的基本用法:
#include <string> #include <iostream> #include <boost/shared_ptr.hpp> class implementation { public: ~implementation() { std::cout <<"destroying implementation\n"; } void do_something() { std::cout << "did something\n"; } }; void test() { boost::shared_ptr<implementation> sp1(new implementation()); std::cout<<"The Sample now has "<<sp1.use_count()<<" references\n"; boost::shared_ptr<implementation> sp2 = sp1; std::cout<<"The Sample now has "<<sp2.use_count()<<" references\n"; sp1.reset(); std::cout<<"After Reset sp1. The Sample now has "<<sp2.use_count()<<" references\n"; sp2.reset(); std::cout<<"After Reset sp2.\n"; } void main() { test(); }
该程序的输出结果如下:
The Sample now has 1 references
The Sample now has 2 references
After Reset sp1. The Sample now has 1 references
destroying implementation
After Reset sp2.
可以看到,boost::shared_ptr指针sp1和sp2同时拥有了implementation对象的访问权限,且当sp1和sp2都释放对该对象的所有权时,其所管理的的对象的内存才被自动释放。在共享对象的访问权限同时,也实现了其内存的自动管理。
boost::shared_ptr的管理机制其实并不复杂,就是对所管理的对象进行了引用计数,当新增一个boost::shared_ptr对该对象进行管理时,就将该对象的引用计数加一;减少一个boost::shared_ptr对该对象进行管理时,就将该对象的引用计数减一,如果该对象的引用计数为0的时候,说明没有任何指针对其管理,才调用delete释放其所占的内存。
上面的那个例子可以的图示如下:
sp1对implementation对象进行管理,其引用计数为1
增加sp2对implementation对象进行管理,其引用计数增加为2
sp1释放对implementation对象进行管理,其引用计数变为1
sp2释放对implementation对象进行管理,其引用计数变为0,该对象被自动删除
和前面介绍的boost::scoped_ptr相比,boost::shared_ptr可以共享对象的所有权,因此其使用范围基本上没有什么限制(还是有一些需要遵循的使用规则,下文中介绍),自然也可以使用在stl的容器中。另外它还是线程安全的,这点在多线程程序中也非常重要。
boost::shared_ptr并不是绝对安全,下面几条规则能使我们更加安全的使用boost::shared_ptr:
(1) 避免对shared_ptr所管理的对象的直接内存管理操作,以免造成该对象的重释放
(2) shared_ptr并不能对循环引用的对象内存自动管理(这点是其它各种引用计数管理内存方式的通病)。
(3) 不要构造一个临时的shared_ptr作为函数的参数。
如下列代码则可能导致内存泄漏:
void test() { foo(boost::shared_ptr<implementation>(new implementation()),g()); } 正确的用法为: void test() { boost::shared_ptr<implementation> sp (new implementation()); foo(sp,g()); }
标签:
原文地址:http://my.oschina.net/u/1398794/blog/498584