题目:
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
45 104
题意:给一个函数的递推公式,求出它的第k项。
思路:矩阵快速幂。
代码:
#include <cstdlib> #include <cctype> #include <cstring> #include <cstdio> #include <cmath> #include<climits> #include <algorithm> #include <vector> #include <string> #include <iostream> #include <sstream> #include <map> #include <set> #include <queue> #include <stack> #include <fstream> #include <numeric> #include <iomanip> #include <bitset> #include <list> #include <stdexcept> #include <functional> #include <utility> #include <ctime> using namespace std; #define PB push_back #define MP make_pair #define REP(i,x,n) for(int i=x;i<(n);++i) #define FOR(i,l,h) for(int i=(l);i<=(h);++i) #define FORD(i,h,l) for(int i=(h);i>=(l);--i) #define SZ(X) ((int)(X).size()) #define ALL(X) (X).begin(), (X).end() #define RI(X) scanf("%d", &(X)) #define RII(X, Y) scanf("%d%d", &(X), &(Y)) #define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z)) #define DRI(X) int (X); scanf("%d", &X) #define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y) #define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z) #define OI(X) printf("%d",X); #define RS(X) scanf("%s", (X)) #define MS0(X) memset((X), 0, sizeof((X))) #define MS1(X) memset((X), -1, sizeof((X))) #define LEN(X) strlen(X) #define F first #define S second #define Swap(a, b) (a ^= b, b ^= a, a ^= b) #define Dpoint strcut node{int x,y} #define cmpd int cmp(const int &a,const int &b){return a>b;} /*#ifdef HOME freopen("in.txt","r",stdin); #endif*/ const int MOD = 1e9+7; typedef vector<int> VI; typedef vector<string> VS; typedef vector<double> VD; typedef long long LL; typedef pair<int,int> PII; //#define HOME int Scan() { int res = 0, ch, flag = 0; if((ch = getchar()) == '-') //判断正负 flag = 1; else if(ch >= '0' && ch <= '9') //得到完整的数 res = ch - '0'; while((ch = getchar()) >= '0' && ch <= '9' ) res = res * 10 + ch - '0'; return flag ? -res : res; } /*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/ struct Matrix { int m[15][15]; void init() { MS0(m); } }; Matrix mul(Matrix a,Matrix b,int M) { Matrix c; c.init(); for(int i=0;i<10;i++) for(int j=0;j<10;j++) for(int k=0;k<10;k++) {c.m[i][j]+=((long long )a.m[i][k]*b.m[k][j])%M; c.m[i][j]%=M;} return c; } Matrix mypow(Matrix a,int k,int M) { Matrix ans; ans.init(); for(int i=0;i<10;i++) ans.m[i][i]=1; Matrix temp=a; while(k) { if(k&1) ans=mul(ans,temp,M); k>>=1; temp=mul(temp,temp,M); } return ans; } int a[10]; int main() { int k,m; while(RII(k,m)!=EOF) { if(k<10) { printf("%d\n",k%m); continue; } for(int i=0;i<10;i++) RI(a[i]); Matrix A; A.init(); for(int i=0;i<10;i++) A.m[0][i]=a[i]; for(int i=1;i<10;i++) A.m[i][i-1]=1; Matrix res=mypow(A,k-9,m); int ans=0; for(int i=0;i<10;i++) ans=(ans+(long long)res.m[0][i]*(9-i))%m; printf("%d\n",ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
hdu1757 A Simple Math Problem(矩阵快速幂)
原文地址:http://blog.csdn.net/u013840081/article/details/48070367