数据集文件:
customers:
1,Stephanie leung,555-555-555 2,Edward Kim,123-456-7890 3,Jose Madriz,281-330-8004 4,David Stork,408-555-0000
3,A,12.95,02-Jun-2008 1,B,88.25,20-May-2008 2,C,32.00,30-Nov,2007 3,D,25.02,22-Jan-2009
1 Stephanie leung,555-555-555,B,88.25,20-May-2008 2 Edward Kim,123-456-7890,C,32.00,30-Nov,2007 3 Jose Madriz,281-330-8004,D,25.02,22-Jan-2009 3 Jose Madriz,281-330-8004,A,12.95,02-Jun-2008
接下来,就来实现一下这个小程序:
在上一篇中说了,我们需要实现几个类,一个是TaggedMapOutput的子类,还有两个是DataJoinMapperBase的子类,一个是mapper,一个是reducer,下面是具体的实现:
TaggedWritable类继承自TaggedMapOutput:
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.contrib.utils.join.TaggedMapOutput; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.util.ReflectionUtils; /*TaggedMapOutput是一个抽象数据类型,封装了标签与记录内容 此处作为DataJoinMapperBase的输出值类型,需要实现Writable接口,所以要实现两个序列化方法 自定义输入类型*/ public class TaggedWritable extends TaggedMapOutput { private Writable data; public TaggedWritable() { this.tag = new Text(); } public TaggedWritable(Writable data) // 构造函数 { //tag就是将数据集按key分区 this.tag = new Text(); // tag可以通过setTag()方法进行设置 this.data = data; } @Override public void readFields(DataInput in) throws IOException { tag.readFields(in); String dataClz = in.readUTF(); if (this.data == null || !this.data.getClass().getName().equals(dataClz)) { try { this.data = (Writable) ReflectionUtils.newInstance(Class.forName(dataClz), null); } catch (ClassNotFoundException e) { e.printStackTrace(); } } data.readFields(in); } @Override public void write(DataOutput out) throws IOException { tag.write(out); out.writeUTF(this.data.getClass().getName()); data.write(out); } @Override public Writable getData() { return data; } }
import org.apache.hadoop.contrib.utils.join.DataJoinMapperBase; import org.apache.hadoop.contrib.utils.join.TaggedMapOutput; import org.apache.hadoop.io.Text; import com.demo.writables.TaggedWritable; public class JoinMapper extends DataJoinMapperBase { // 这个在任务开始时调用,用于产生标签 // 此处就直接以文件名作为标签----标签的作用就是将数据集分区 @Override protected Text generateInputTag(String inputFile) { System.out.println("inputFile = " + inputFile); return new Text(inputFile); } // 这里我们已经确定分割符为',',更普遍的,用户应能自己指定分割符和组键。 // 设置组键 @Override protected Text generateGroupKey(TaggedMapOutput record) { String tag = ((Text) record.getTag()).toString(); System.out.println("tag = " + tag); String line = ((Text) record.getData()).toString(); String[] tokens = line.split(","); return new Text(tokens[0]); } // 返回一个任何带任何我们想要的Text标签的TaggedWritable @Override protected TaggedMapOutput generateTaggedMapOutput(Object value) { TaggedWritable retv = new TaggedWritable((Text) value); retv.setTag(this.inputTag); // 不要忘记设定当前键值的标签 return retv;/// } }
import org.apache.hadoop.contrib.utils.join.DataJoinReducerBase; import org.apache.hadoop.contrib.utils.join.TaggedMapOutput; import org.apache.hadoop.io.Text; import com.demo.writables.TaggedWritable; public class JoinReducer extends DataJoinReducerBase { // 两个参数数组大小一定相同,并且最多等于数据源个数 @Override protected TaggedMapOutput combine(Object[] tags, Object[] values) { if (tags.length < 2) return null; // 这一步,实现内联结 String joinedStr = ""; for (int i = 0; i < values.length; i++) { if (i > 0) joinedStr += ","; // 以逗号作为原两个数据源记录链接的分割符 TaggedWritable tw = (TaggedWritable) values[i]; String line = ((Text) tw.getData()).toString(); String[] tokens = line.split(",", 2); // 将一条记录划分两组,去掉第一组的组键名。 joinedStr += tokens[1]; } TaggedWritable retv = new TaggedWritable(new Text(joinedStr)); retv.setTag((Text) tags[0]); // 这只retv的组键,作为最终输出键。 return retv; } }
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import com.demo.mappers.JoinMapper; import com.demo.reducers.JoinReducer; import com.demo.writables.TaggedWritable; public class DataJoinDriver extends Configured implements Tool { public int run(String[] args) throws Exception { Configuration conf = getConf(); if (args.length != 2) { System.err.println("Usage:DataJoin <input path> <output path>"); System.exit(-1); } Path in = new Path(args[0]); Path out = new Path(args[1]); JobConf job = new JobConf(conf, DataJoinDriver.class); job.setJobName("DataJoin"); //FileSystem hdfs =FileSystem.get(conf); FileSystem hdfs = in.getFileSystem(conf); FileInputFormat.setInputPaths(job, in); if (hdfs.exists(new Path(args[1]))) { hdfs.delete(new Path(args[1]), true); } FileOutputFormat.setOutputPath(job, out); job.setMapperClass(JoinMapper.class); job.setReducerClass(JoinReducer.class); job.setInputFormat(TextInputFormat.class); job.setOutputFormat(TextOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(TaggedWritable.class); JobClient.runJob(job); return 0; } public static void main(String[] args) throws Exception { args = new String[]{"hdfs://localhost:9000/input/different datasource data/*.txt","hdfs://localhost:9000/output/secondOutput1"}; int res = ToolRunner.run(new Configuration(), new DataJoinDriver(), args); System.exit(res); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/wild_elegance_k/article/details/48065477