标签:spark spark core 源码
上一节举例讲解了transformation操作,这一节以reduce为例讲解action操作
首先看submitJob方法,它将我们reduce中写的处理函数随JobSubmitted消息传递出去,因为每个分区都需要调用它进行计算;
而resultHandler是指最后合并的方法,在每个task完成后,需要调用resultHandler将最终结果合并。所以它不需要随JobSubmitted消息传递,而是保存在JobWaiter中
/** * Submit a job to the job scheduler and get a JobWaiter object back. The JobWaiter object * can be used to block until the the job finishes executing or can be used to cancel the job. */ def submitJob[T, U]( rdd: RDD[T], func: (TaskContext, Iterator[T]) => U, partitions: Seq[Int], callSite: CallSite, allowLocal: Boolean, resultHandler: (Int, U) => Unit, properties: Properties): JobWaiter[U] = { // Check to make sure we are not launching a task on a partition that does not exist. val maxPartitions = rdd.partitions.length partitions.find(p => p >= maxPartitions || p < 0).foreach { p => throw new IllegalArgumentException( "Attempting to access a non-existent partition: " + p + ". " + "Total number of partitions: " + maxPartitions) } val jobId = nextJobId.getAndIncrement() if (partitions.size == 0) { return new JobWaiter[U](this, jobId, 0, resultHandler) } assert(partitions.size > 0) val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _] val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler) eventProcessLoop.post(JobSubmitted( jobId, rdd, func2, partitions.toArray, allowLocal, callSite, waiter, SerializationUtils.clone(properties))) waiter }首先介绍一下handleJobSubmitted方法的参数
finalRDD:触发该action之前的RDD
func:对于每个分区中的元素执行的函数
partitions:分区号Array
listener:这里指JobWaiter
private[scheduler] def handleJobSubmitted(jobId: Int, finalRDD: RDD[_], func: (TaskContext, Iterator[_]) => _, partitions: Array[Int], allowLocal: Boolean, callSite: CallSite, listener: JobListener, properties: Properties) { var finalStage: ResultStage = null try { // New stage creation may throw an exception if, for example, jobs are run on a // HadoopRDD whose underlying HDFS files have been deleted. finalStage = newResultStage(finalRDD, partitions.size, jobId, callSite) } catch { case e: Exception => logWarning("Creating new stage failed due to exception - job: " + jobId, e) listener.jobFailed(e) return } if (finalStage != null) { val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties) clearCacheLocs() logInfo("Got job %s (%s) with %d output partitions (allowLocal=%s)".format( job.jobId, callSite.shortForm, partitions.length, allowLocal)) logInfo("Final stage: " + finalStage + "(" + finalStage.name + ")") logInfo("Parents of final stage: " + finalStage.parents) logInfo("Missing parents: " + getMissingParentStages(finalStage)) val shouldRunLocally = localExecutionEnabled && allowLocal && finalStage.parents.isEmpty && partitions.length == 1 val jobSubmissionTime = clock.getTimeMillis() if (shouldRunLocally) { // Compute very short actions like first() or take() with no parent stages locally. listenerBus.post( SparkListenerJobStart(job.jobId, jobSubmissionTime, Seq.empty, properties)) runLocally(job) } else { jobIdToActiveJob(jobId) = job activeJobs += job finalStage.resultOfJob = Some(job) val stageIds = jobIdToStageIds(jobId).toArray val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo)) listenerBus.post( SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties)) submitStage(finalStage) } } submitWaitingStages() }
这是一个比较重要的过程,先讲finalStage = newResultStage(finalRDD, partitions.size, jobId, callSite)
这里有一个stage的概念。Task是在集群上运行的基本单位。一个Task负责处理RDD的一个partition。RDD的多个patition会分别由不同的Task去处理,这一组可以同时运行的Task就组成了一个Stage。偷一个官方的图。
以finalRDD为参数构建一个ResultStage
private def newResultStage( rdd: RDD[_], numTasks: Int, jobId: Int, callSite: CallSite): ResultStage = { val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, jobId) val stage: ResultStage = new ResultStage(id, rdd, numTasks, parentStages, jobId, callSite) stageIdToStage(id) = stage updateJobIdStageIdMaps(jobId, stage) stage }
解释一下getParentStagesAndId内部的处理逻辑:从finalRDD开始,查找它的所有依赖中的shuffle依赖,如果是普通依赖,则继续往前找,直到找到shuffle依赖为止。这样,就能获取到与finalRDD相邻的所有shuffle依赖。在上图中,即是groupBy和join两个操作产生的依赖。
得到这些shuffle依赖之后,再往前获取整个job所有shuffle依赖,并以shuffle依赖为边界创建ShuffleMapStage,将每个shuffleId注册到mapOutputTracker中,它是跟踪每个shuffleMapStage输出的位置等信息。
在newResultStage方法中,getParentStagesAndId只返回与finalRDD最近的stage
之后再通过父stages,分区数目,stageId,finalRDD,jobId等构建ResultStage。将jobId保存到所有stage的jobIds成员中。一个stage还能有多个jobId???
至此,finalStage的建设就完成了。
接着创建了ActiveJob,它只是将那些参数信息封装起来,并有一个成员记录每个partition是否完成。
最后就是调用submitStage将finalStage提交
/** Submits stage, but first recursively submits any missing parents. */ private def submitStage(stage: Stage) { val jobId = activeJobForStage(stage) if (jobId.isDefined) { logDebug("submitStage(" + stage + ")") //waitingStages的意思是它还有依赖的父stage还没执行完成时,会先放进这里 if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) { val missing = getMissingParentStages(stage).sortBy(_.id) logDebug("missing: " + missing) //如果没有父stage未完成,则提交本身的stage if (missing.isEmpty) { logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents") submitMissingTasks(stage, jobId.get) } else {//如果还有未完成的父stage,则递归调用submitStage,先提交父stage,把自己放进waitingStages中 for (parent <- missing) { submitStage(parent) } waitingStages += stage } } } else { abortStage(stage, "No active job for stage " + stage.id) } }
submitMissingTasks代码解析见注释
/** Called when stage's parents are available and we can now do its task. */ private def submitMissingTasks(stage: Stage, jobId: Int) { logDebug("submitMissingTasks(" + stage + ")") // Get our pending tasks and remember them in our pendingTasks entry stage.pendingTasks.clear() // First figure out the indexes of partition ids to compute. //如果是ShuffleMapStage,计算这个stage中哪些分区是需要计算的。如果某个分区计算完成了,则会向该stage中记录 //该分区的MapStatus。所以这里返回的是需要计算的分区号 //如果是ResultStage,返回这个stage中标记是未完成的分区号 val partitionsToCompute: Seq[Int] = { stage match { case stage: ShuffleMapStage => (0 until stage.numPartitions).filter(id => stage.outputLocs(id).isEmpty) case stage: ResultStage => val job = stage.resultOfJob.get (0 until job.numPartitions).filter(id => !job.finished(id)) } } val properties = jobIdToActiveJob.get(stage.jobId).map(_.properties).orNull runningStages += stage // SparkListenerStageSubmitted should be posted before testing whether tasks are // serializable. If tasks are not serializable, a SparkListenerStageCompleted event // will be posted, which should always come after a corresponding SparkListenerStageSubmitted // event. stage.latestInfo = StageInfo.fromStage(stage, Some(partitionsToCompute.size)) outputCommitCoordinator.stageStart(stage.id) listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties)) // TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times. // Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast // the serialized copy of the RDD and for each task we will deserialize it, which means each // task gets a different copy of the RDD. This provides stronger isolation between tasks that // might modify state of objects referenced in their closures. This is necessary in Hadoop // where the JobConf/Configuration object is not thread-safe. //将Task执行所要用到的数据序列化,再进行广播出去,在Executor端真正执行时反序列化 //下面说的很清楚了,对于ShuffleMapTask而言,包括rdd和shuffle的依赖;对于ResultStage而言,包括rdd和执行函数 var taskBinary: Broadcast[Array[Byte]] = null try { // For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep). // For ResultTask, serialize and broadcast (rdd, func). val taskBinaryBytes: Array[Byte] = stage match { case stage: ShuffleMapStage => closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array() case stage: ResultStage => closureSerializer.serialize((stage.rdd, stage.resultOfJob.get.func): AnyRef).array() } taskBinary = sc.broadcast(taskBinaryBytes) } catch { // In the case of a failure during serialization, abort the stage. case e: NotSerializableException => abortStage(stage, "Task not serializable: " + e.toString) runningStages -= stage // Abort execution return case NonFatal(e) => abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}") runningStages -= stage return } //对参数中的stage类型的不同,构建不同的tasks,每个分区new一个ShuffleMapTask或者ResultTask val tasks: Seq[Task[_]] = try { stage match { case stage: ShuffleMapStage => partitionsToCompute.map { id => val locs = getPreferredLocs(stage.rdd, id) val part = stage.rdd.partitions(id) new ShuffleMapTask(stage.id, taskBinary, part, locs) } case stage: ResultStage => val job = stage.resultOfJob.get partitionsToCompute.map { id => val p: Int = job.partitions(id) val part = stage.rdd.partitions(p) val locs = getPreferredLocs(stage.rdd, p) new ResultTask(stage.id, taskBinary, part, locs, id) } } } catch { case NonFatal(e) => abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}") runningStages -= stage return } //注意,这里将所有的tasks放进stage的pendingTasks中,之后每完成一个任务就删除一个。最后将这些tasks,stageId,attemptId,jobId等信息封装成TaskSet,调用taskScheduler.submitTasks进行任务调度 if (tasks.size > 0) { logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")") stage.pendingTasks ++= tasks logDebug("New pending tasks: " + stage.pendingTasks) taskScheduler.submitTasks( new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties)) stage.latestInfo.submissionTime = Some(clock.getTimeMillis()) } else { // Because we posted SparkListenerStageSubmitted earlier, we should mark // the stage as completed here in case there are no tasks to run markStageAsFinished(stage, None) val debugString = stage match { case stage: ShuffleMapStage => s"Stage ${stage} is actually done; " + s"(available: ${stage.isAvailable}," + s"available outputs: ${stage.numAvailableOutputs}," + s"partitions: ${stage.numPartitions})" case stage : ResultStage => s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})" } logDebug(debugString) } }看Standalone下的taskSchedulerImpl的submitTasks方法
<pre name="code" class="java">override def submitTasks(taskSet: TaskSet) { val tasks = taskSet.tasks logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks") this.synchronized { //这里创建一个TaskSetManager,用来管理这个taskset整个生命周期。在新建这个manager时,会根据我们设置的 preferredLocations放进各种不同本地性的HashMap中,作为之后调度的依据。 val manager = createTaskSetManager(taskSet, maxTaskFailures) activeTaskSets(taskSet.id) = manager //我们之前章节讲过,pool是用来调度taskset的,调度的顺序就是依靠实际的builder来管理的(FIFO/FAIR)。这里就是往调度池中放入一个taskset schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties) if (!isLocal && !hasReceivedTask) { //间隔15s之后启动定时器,如果还没有启动任务,发出警告;如果启动任务了,关闭定时器 starvationTimer.scheduleAtFixedRate(new TimerTask() { override def run() { if (!hasLaunchedTask) { logWarning("Initial job has not accepted any resources; " + "check your cluster UI to ensure that workers are registered " + "and have sufficient resources") } else { this.cancel() } } }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS) } hasReceivedTask = true } backend.reviveOffers()//见下面分析 }最重要的是调用了reviveOffers,实际最终还是调用了CoarseGrainedSchedulerBackend的makeOffers方法
// Make fake resource offers on all executors def makeOffers() { launchTasks(scheduler.resourceOffers(executorDataMap.map { case (id, executorData) => new WorkerOffer(id, executorData.executorHost, executorData.freeCores) }.toSeq)) }
makeOffers方法看似简单,实则处理的逻辑非常多。我们先看里面的resourceOffers,再看外面的launchTasks
1、resourceOffers
将之前注册上来的每个Executor包装成WorkerOffer。
他的参数其实就是Executor的一个list,我们的任务就是下发到这些Executor上去执行
/** * Called by cluster manager to offer resources on slaves. We respond by asking our active task * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so * that tasks are balanced across the cluster. */ def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized { // Mark each slave as alive and remember its hostname // Also track if new executor is added var newExecAvail = false for (o <- offers) { executorIdToHost(o.executorId) = o.host activeExecutorIds += o.executorId if (!executorsByHost.contains(o.host)) { executorsByHost(o.host) = new HashSet[String]() executorAdded(o.executorId, o.host) newExecAvail = true } for (rack <- getRackForHost(o.host)) { hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host } } // Randomly shuffle offers to avoid always placing tasks on the same set of workers. //将所有的这些Executor随机化, val shuffledOffers = Random.shuffle(offers) // Build a list of tasks to assign to each worker. //针对每一个Executor,新建一个ArrayBuffer存放TaskDescription。因为每个Executor上运行不止一个任务 val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores)) //每个Executor上剩余的cores val availableCpus = shuffledOffers.map(o => o.cores).toArray //根据配置的调度模式,从中取出一组taskSet。因为没有依赖关系的多个taskset是可以并发运行的。 val sortedTaskSets = rootPool.getSortedTaskSetQueue for (taskSet <- sortedTaskSets) { logDebug("parentName: %s, name: %s, runningTasks: %s".format( taskSet.parent.name, taskSet.name, taskSet.runningTasks)) if (newExecAvail) { taskSet.executorAdded() } } // Take each TaskSet in our scheduling order, and then offer it each node in increasing order // of locality levels so that it gets a chance to launch local tasks on all of them. // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY //这部分代码是根据规则分配任务。 //这里根据PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY的先后顺序,依次在Executor上分配task,最后将形成一个tasks{Seq[Seq[TaskDescription]]结构},第一个Seq是Executor的序号,下一个Seq是在每个Executor上分配的tasks信息 var launchedTask = false for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) { do { //针对一个maxLocality,在每个executor上分配一个task;再针对下一个maxLocality,。。。 launchedTask = resourceOfferSingleTaskSet( taskSet, maxLocality, shuffledOffers, availableCpus, tasks) } while (launchedTask) } if (tasks.size > 0) { hasLaunchedTask = true//这里看到,hasLaunchTask被置为true了,那前面间隔15s的定时器就可以关闭了 } return tasks }这样,resourceOffers就介绍完了。之后将调用launchTasks将上面的tasks启动起来。
2、launchTasks
这部分的介绍见代码注释,主要的工作还是将任务序列化,之后发送到Executor端执行
// Launch tasks returned by a set of resource offers def launchTasks(tasks: Seq[Seq[TaskDescription]]) { for (task <- tasks.flatten) { val ser = SparkEnv.get.closureSerializer.newInstance() //这里将TaskDescription进行序列化,内容包含ExecutorId,task index等。之前是将每个task的rdd及依赖或者方法序列化,注意区分。 val serializedTask = ser.serialize(task) //如果序列化之后的大小超出限制,abort if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) { val taskSetId = scheduler.taskIdToTaskSetId(task.taskId) scheduler.activeTaskSets.get(taskSetId).foreach { taskSet => try { var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " + "spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " + "spark.akka.frameSize or using broadcast variables for large values." msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize, AkkaUtils.reservedSizeBytes) taskSet.abort(msg) } catch { case e: Exception => logError("Exception in error callback", e) } } } else {//向Executor发送LaunchTask消息 val executorData = executorDataMap(task.executorId) executorData.freeCores -= scheduler.CPUS_PER_TASK executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask))) } } }查看Executor端收到LaunchTask消息之后的逻辑
case LaunchTask(data) => if (executor == null) { logError("Received LaunchTask command but executor was null") System.exit(1) } else { //将TaskDescription反序列化出来 val taskDesc = ser.deserialize[TaskDescription](data.value) logInfo("Got assigned task " + taskDesc.taskId) //这里的参数taskDesc.serializedTask就是第一次序列化的rdd及依赖或者执行的方法的结果和执行该task是需要的第三方jar包等 executor.launchTask(this, taskId = taskDesc.taskId, attemptNumber = taskDesc.attemptNumber, taskDesc.name, taskDesc.serializedTask) }查看executor.launchTask,创建TaskRunner,之后从线程池中取线程运行
def launchTask( context: ExecutorBackend, taskId: Long, attemptNumber: Int, taskName: String, serializedTask: ByteBuffer): Unit = { val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName, serializedTask) runningTasks.put(taskId, tr) threadPool.execute(tr) }至此,我们了解了action动作触发之后的处理流程。
下一节介绍具体task运行的流程以及获取结果。
版权声明:本文为博主原创文章,未经博主允许不得转载。
spark core源码分析9 从简单例子看action操作
标签:spark spark core 源码
原文地址:http://blog.csdn.net/yueqian_zhu/article/details/48029909