码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 5424 Rikka with Graph II 哈密顿通路

时间:2015-08-30 01:04:01      阅读:250      评论:0      收藏:0      [点我收藏+]

标签:

Rikka with Graph II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 367    Accepted Submission(s): 90


Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has a non-direct graph with n技术分享 vertices and n技术分享 edges. Now he wants you to tell him if there exist a Hamiltonian path.

It is too difficult for Rikka. Can you help her?
 

Input
There are no more than 100 testcases.

For each testcase, the first line contains a number n(1n1000)技术分享.

Then n技术分享 lines follow. Each line contains two numbers u,v(1u,vn)技术分享 , which means there is an edge between u技术分享 and v技术分享.
 

Output
For each testcase, if there exist a Hamiltonian path print "YES" , otherwise print "NO".
 

Sample Input
4 1 1 1 2 2 3 2 4 3 1 2 2 3 3 1
 

Sample Output
NO YES Hint For the second testcase, One of the path is 1->2->3 If you doesn‘t know what is Hamiltonian path, click here (https://en.wikipedia.org/wiki/Hamiltonian_path).
 

Source
 

Recommend
hujie   |   We have carefully selected several similar problems for you:  5426 5425 5422 5421 5420 
题意,给出一个n点n边的图,要求是否存在哈密顿通路。

哈密顿通路:经过每个点有且仅有一次的一条通路。

由于图,只有n个边,那么最小度的那个边,最大只有2,先判定,是否连通,如果连通,每次,都找那个度最小的作为入点,因为,最小度的点,一定会成为某条路的端点,这样就可以用o(n )的复杂度,找到一条哈密顿回路。

给个测试数据,

1 5 1 2 2 3 2 4 1 3

#define N 1005
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,a,b,d[N],minx,mi;
vector<int> p[N];
bool vis[N];
void DFS(int x){
    vis[x] = true;
    FI(p[x].size()){
        int goal = p[x][i];
        if(!vis[goal]){
            DFS(goal);
        }
    }
}
int main()
{
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
     while(S(n)!=EOF)
    {
        FI(n+1) p[i].clear();
        fill(d,0);
        FI(n){
            S2(a,b);
            if(a != b){
               p[a].push_back(b);
               p[b].push_back(a);
               d[a]++;d[b]++;
            }
        }
        bool isConnect = true;
        fill(vis,false);
        DFS(1);
        For(i,1,n+1){
            if(!vis[i]){
                isConnect = false;
                break;
            }
        }
        if(!isConnect){
            printf("NO\n");
            continue;
        }
        minx = N;mi = 1;
        For(i,1,n+1){
            if(d[i] < minx){
                mi = i;
                minx = d[i];
            }
        }
        fill(vis,false);
        vis[mi] = true;
        while(true){
            bool isChange = false;
            minx = N;
            int mit = -1;
            FI(p[mi].size()){
                int goal = p[mi][i];
                if(!vis[goal]){
                    if(d[goal] < minx){
                        mit = goal;
                        minx = d[goal];
                    }
                    isChange = true;
                }
            }
            if(!isChange) break;
            mi = mit;
            vis[mi] = true;
        }
        isConnect = true;
        For(i,1,n+1){
            if(!vis[i]){
                isConnect = false;
                break;
            }
        }
        if(!isConnect)
            printf("NO\n");
        else
            printf("YES\n");
    }
    //fclose(stdin);
    //fclose(stdout);
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

hdu 5424 Rikka with Graph II 哈密顿通路

标签:

原文地址:http://blog.csdn.net/mengzhengnan/article/details/48093985

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!