码迷,mamicode.com
首页 > 其他好文 > 详细

Gym - 100342I Travel Agency(割顶)

时间:2015-08-30 21:27:03      阅读:123      评论:0      收藏:0      [点我收藏+]

标签:割顶   gym   

题意:给一个无向图,对于每个节点a,统计有多少点对(u,v)之间的路径必须经过a。

思路:首先求一个图的割顶,在这颗dfs时间树中我们可以发现,对于一个结点u,如果他的一颗子树不能连回u以上的结点,那么这一棵子树的结点与除u以外的结点之间的路径必然经过u,那么在dfs的过程中不断更新答案即可。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii (pair<int, int>)
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

const int maxn = 25000;
//const int INF = 0x3f3f3f3f;
int n, m;
int pre[maxn], ans[maxn], dfs_clock, cnt[maxn];
vector<int> G[maxn];
//无向图的割顶和桥
int dfs(int u, int fa) { //u在dfs树中的父节点为fa 
	int lowu = pre[u] = ++dfs_clock;
	ans[u] = 0; cnt[u] = 1;
	int sum = 0;
	for(int i = 0; i < G[u].size(); i++) {
		int v = G[u][i];
		if(!pre[v]) {   //没有访问过v 
			int lowv = dfs(v, u);
			lowu = min(lowu, lowv);    //用后代的low函数更新u的low函数 
			cnt[u] += cnt[v];
			if(lowv >= pre[u]) {
				ans[u] += sum * cnt[v];
				sum += cnt[v];
			}
		}
		else if(pre[v] < pre[u] && v != fa)  lowu = min(lowu, pre[v]);  //用反向边更新u的low函数 
	} 
	ans[u] += (n-1-sum) * sum + n - 1;
	return lowu; 
} 

int main() {
    freopen("travel.in", "r", stdin);
    freopen("travel.out", "w", stdout);
	//freopen("input.txt", "r", stdin);
	cin >> n >> m;
	for(int i = 0; i < m; i++) {
        int u, v; scanf("%d%d", &u, &v);
        G[u].push_back(v);
        G[v].push_back(u);
	}
	dfs(1, -1);	
	for(int i = 1; i <= n; i++) printf("%d\n", ans[i]);
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Gym - 100342I Travel Agency(割顶)

标签:割顶   gym   

原文地址:http://blog.csdn.net/u014664226/article/details/48108471

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!