标签:
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11123 | Accepted: 7913 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
题意:给你一个求解第N个斐波那契数的公式。 让你求出Fn % 10000。
构造单位矩阵,然后就是矩阵快速幂了。
AC代码:
#include <cstdio> #include <cstring> #include <algorithm> #define MAXN 100 #define LL long long #define MOD 10000 using namespace std; struct Matrix { LL a[MAXN][MAXN]; int r, c;//行数 列数 }; Matrix ori, res;//初始矩阵 和 结果矩阵 void init()//初始化矩阵 { memset(res.a, 0, sizeof(res.a)); res.r = 2; res.c = 2; for(int i = 1; i <= 2; i++)//构造单位矩阵 res.a[i][i] = 1; ori.r = 2; ori.c = 2; ori.a[1][1] = ori.a[1][2] = ori.a[2][1] = 1; ori.a[2][2] = 0; } Matrix multi(Matrix x, Matrix y) { Matrix z; memset(z.a, 0, sizeof(z.a)); z.r = x.r, z.c = y.c;//新矩阵行数等于x矩阵的行数 列数等于y矩阵的列数 for(int i = 1; i <= x.r; i++)//x矩阵的行数 { for(int k = 1; k <= x.c; k++)//矩阵x的列数等于矩阵y的行数 即x.c = y.r { if(x.a[i][k] == 0) continue;//优化 for(int j = 1; j<= y.c; j++)//y矩阵的列数 z.a[i][j] = (z.a[i][j] + (x.a[i][k] * y.a[k][j]) % MOD) % MOD; } } return z; } void Matrix_mod(int n) { while(n)//N次幂 { if(n & 1) res = multi(ori, res); ori = multi(ori, ori); n >>= 1; } printf("%lld\n", res.a[1][2] % MOD); } int main() { int N; while(scanf("%d", &N), N!=-1) { init();//初始化单位矩阵 Matrix_mod(N);//矩阵快速幂 } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
poj 3070 Fibonacci 【矩阵快速幂 求第N个斐波那契数%1000】
标签:
原文地址:http://blog.csdn.net/chenzhenyu123456/article/details/48108481