标签:style blog http color 文件 os
具体原理参考如下讲义:
1、神经网络
2、反向传导
看完材料1和2就可以梳理清楚bp神经网络的基本工作原理,下面通过一个C语言实现的程序来练习这个算法
1 //Backpropagation, 25x25x8 units, binary sigmoid function network 2 //Written by Thomas Riga, University of Genoa, Italy 3 //thomas@magister.magi.unige.it 4 5 #include <iostream> 6 #include <fstream> 7 #include <conio.h> 8 #include <stdlib.h> 9 #include <math.h> 10 #include <ctype.h> 11 #include <stdio.h> 12 #include <float.h> 13 using namespace std; 14 15 double **input, 16 *hidden, 17 **output, 18 **target, 19 *bias, 20 **weight_i_h, 21 **weight_h_o, 22 *errorsignal_hidden, 23 *errorsignal_output; 24 25 int input_array_size, 26 hidden_array_size, 27 output_array_size, 28 max_patterns, 29 bias_array_size, 30 gaset = -2500, 31 number_of_input_patterns, 32 pattern, 33 file_loaded = 0, 34 ytemp = 0, 35 ztemp = 0; 36 double learning_rate, 37 max_error_tollerance = 0.1; 38 char filename[128]; 39 #define IA 16807 40 #define IM 2147483647 41 #define AM (1.0 / IM) 42 #define IQ 127773 43 #define IR 2836 44 #define NTAB 32 45 #define NDIV (1+(IM-1) / NTAB) 46 #define EPS 1.2e-7 47 #define RNMX (1.0 - EPS) 48 int compare_output_to_target(); 49 void load_data(char *arg); 50 void save_data(char *argres); 51 void forward_pass(int pattern); 52 void backward_pass(int pattern); 53 void custom(); 54 void compute_output_pattern(); 55 void get_file_name(); 56 float bedlam(long *idum); 57 void learn(); 58 void make(); 59 void test(); 60 void print_data(); 61 void print_data_to_screen(); 62 void print_data_to_file(); 63 void output_to_screen(); 64 int getnumber(); 65 void change_learning_rate(); 66 void initialize_net(); 67 void clear_memory(); 68 69 int main() 70 { 71 cout << "backpropagation network by Thomas Riga, University of Genoa, Italy" << endl; 72 for(;;) { 73 char choice; 74 cout << endl << "1. load data" << endl; 75 cout << "2. learn from data" << endl; 76 cout << "3. compute output pattern" << endl; 77 cout << "4. make new data file" << endl; 78 cout << "5. save data" << endl; 79 cout << "6. print data" << endl; 80 cout << "7. change learning rate" << endl; 81 cout << "8. exit" << endl << endl; 82 cout << "Enter your choice (1-8)"; 83 do { choice = getch(); } while (choice != ‘1‘ && choice != ‘2‘ && choice != ‘3‘ && choice != ‘4‘ && choice != ‘5‘ && choice != ‘6‘ && choice != ‘7‘ && choice != ‘8‘); 84 switch(choice) { 85 case ‘1‘: 86 { 87 if (file_loaded == 1) clear_memory(); 88 get_file_name(); 89 file_loaded = 1; 90 load_data(filename); 91 } 92 break; 93 case ‘2‘: learn(); 94 break; 95 case ‘3‘: compute_output_pattern(); 96 break; 97 case ‘4‘: make(); 98 break; 99 case ‘5‘: 100 { 101 if (file_loaded == 0) 102 { 103 cout << endl 104 << "there is no data loaded into memory" 105 << endl; 106 break; 107 } 108 cout << endl << "enter a filename to save data to: "; 109 cin >> filename; 110 save_data(filename); 111 } 112 break; 113 case ‘6‘: print_data(); 114 break; 115 case ‘7‘: change_learning_rate(); 116 break; 117 case ‘8‘: return 0; 118 }; 119 } 120 } 121 122 void initialize_net() 123 { 124 int x; 125 input = new double * [number_of_input_patterns]; 126 if(!input) { cout << endl << "memory problem!"; exit(1); } 127 for(x=0; x<number_of_input_patterns; x++) 128 { 129 input[x] = new double [input_array_size]; 130 if(!input[x]) { cout << endl << "memory problem!"; exit(1); } 131 } 132 hidden = new double [hidden_array_size]; 133 if(!hidden) { cout << endl << "memory problem!"; exit(1); } 134 output = new double * [number_of_input_patterns]; 135 if(!output) { cout << endl << "memory problem!"; exit(1); } 136 for(x=0; x<number_of_input_patterns; x++) 137 { 138 output[x] = new double [output_array_size]; 139 if(!output[x]) { cout << endl << "memory problem!"; exit(1); } 140 } 141 target = new double * [number_of_input_patterns]; 142 if(!target) { cout << endl << "memory problem!"; exit(1); } 143 for(x=0; x<number_of_input_patterns; x++) 144 { 145 target[x] = new double [output_array_size]; 146 if(!target[x]) { cout << endl << "memory problem!"; exit(1); } 147 } 148 bias = new double [bias_array_size]; 149 if(!bias) { cout << endl << "memory problem!"; exit(1); } 150 weight_i_h = new double * [input_array_size]; 151 if(!weight_i_h) { cout << endl << "memory problem!"; exit(1); } 152 for(x=0; x<input_array_size; x++) 153 { 154 weight_i_h[x] = new double [hidden_array_size]; 155 if(!weight_i_h[x]) { cout << endl << "memory problem!"; exit(1); } 156 } 157 weight_h_o = new double * [hidden_array_size]; 158 if(!weight_h_o) { cout << endl << "memory problem!"; exit(1); } 159 for(x=0; x<hidden_array_size; x++) 160 { 161 weight_h_o[x] = new double [output_array_size]; 162 if(!weight_h_o[x]) { cout << endl << "memory problem!"; exit(1); } 163 } 164 errorsignal_hidden = new double [hidden_array_size]; 165 if(!errorsignal_hidden) { cout << endl << "memory problem!"; exit(1); } 166 errorsignal_output = new double [output_array_size]; 167 if(!errorsignal_output) { cout << endl << "memory problem!"; exit(1); } 168 return; 169 } 170 171 void learn() 172 { 173 if (file_loaded == 0) 174 { 175 cout << endl 176 << "there is no data loaded into memory" 177 << endl; 178 return; 179 } 180 cout << endl << "learning..." << endl << "press a key to return to menu" << endl; 181 register int y; 182 while(!kbhit()) { 183 for(y=0; y<number_of_input_patterns; y++) { 184 forward_pass(y); 185 backward_pass(y); 186 } 187 if(compare_output_to_target()) { 188 cout << endl << "learning successful" << endl; 189 return; 190 } 191 192 } 193 cout << endl << "learning not successful yet" << endl; 194 return; 195 } 196 197 void load_data(char *arg) { 198 int x, y; 199 ifstream in(arg); 200 if(!in) { cout << endl << "failed to load data file" << endl; file_loaded = 0; return; } 201 in >> input_array_size; 202 in >> hidden_array_size; 203 in >> output_array_size; 204 in >> learning_rate; 205 in >> number_of_input_patterns; 206 bias_array_size = hidden_array_size + output_array_size; 207 initialize_net(); 208 for(x = 0; x < bias_array_size; x++) in >> bias[x]; 209 for(x=0; x<input_array_size; x++) { 210 for(y=0; y<hidden_array_size; y++) in >> weight_i_h[x][y]; 211 } 212 for(x = 0; x < hidden_array_size; x++) { 213 for(y=0; y<output_array_size; y++) in >> weight_h_o[x][y]; 214 } 215 for(x=0; x < number_of_input_patterns; x++) { 216 for(y=0; y<input_array_size; y++) in >> input[x][y]; 217 } 218 for(x=0; x < number_of_input_patterns; x++) { 219 for(y=0; y<output_array_size; y++) in >> target[x][y]; 220 } 221 in.close(); 222 cout << endl << "data loaded" << endl; 223 return; 224 } 225 226 227 void forward_pass(int pattern) 228 { 229 _control87(MCW_EM, MCW_EM); 230 register double temp=0; 231 register int x,y; 232 233 // INPUT -> HIDDEN 234 for(y=0; y<hidden_array_size; y++) { 235 for(x=0; x<input_array_size; x++) { 236 temp += (input[pattern][x] * weight_i_h[x][y]); 237 } 238 hidden[y] = (1.0 / (1.0 + exp(-1.0 * (temp + bias[y])))); 239 temp = 0; 240 } 241 242 // HIDDEN -> OUTPUT 243 for(y=0; y<output_array_size; y++) { 244 for(x=0; x<hidden_array_size; x++) { 245 temp += (hidden[x] * weight_h_o[x][y]); 246 } 247 output[pattern][y] = (1.0 / (1.0 + exp(-1.0 * (temp + bias[y + hidden_array_size])))); 248 temp = 0; 249 } 250 return; 251 } 252 253 254 255 void backward_pass(int pattern) 256 { 257 register int x, y; 258 register double temp = 0; 259 260 // COMPUTE ERRORSIGNAL FOR OUTPUT UNITS 261 for(x=0; x<output_array_size; x++) { 262 errorsignal_output[x] = (target[pattern][x] - output[pattern][x]); 263 } 264 265 // COMPUTE ERRORSIGNAL FOR HIDDEN UNITS 266 for(x=0; x<hidden_array_size; x++) { 267 for(y=0; y<output_array_size; y++) { 268 temp += (errorsignal_output[y] * weight_h_o[x][y]); 269 } 270 errorsignal_hidden[x] = hidden[x] * (1-hidden[x]) * temp; 271 temp = 0.0; 272 } 273 274 // ADJUST WEIGHTS OF CONNECTIONS FROM HIDDEN TO OUTPUT UNITS 275 double length = 0.0; 276 for (x=0; x<hidden_array_size; x++) { 277 length += hidden[x]*hidden[x]; 278 } 279 if (length<=0.1) length = 0.1; 280 for(x=0; x<hidden_array_size; x++) { 281 for(y=0; y<output_array_size; y++) { 282 weight_h_o[x][y] += (learning_rate * errorsignal_output[y] * 283 hidden[x]/length); 284 } 285 } 286 287 // ADJUST BIASES OF HIDDEN UNITS 288 for(x=hidden_array_size; x<bias_array_size; x++) { 289 bias[x] += (learning_rate * errorsignal_output[x] / length); 290 } 291 292 // ADJUST WEIGHTS OF CONNECTIONS FROM INPUT TO HIDDEN UNITS 293 length = 0.0; 294 for (x=0; x<input_array_size; x++) { 295 length += input[pattern][x]*input[pattern][x]; 296 } 297 if (length<=0.1) length = 0.1; 298 for(x=0; x<input_array_size; x++) { 299 for(y=0; y<hidden_array_size; y++) { 300 weight_i_h[x][y] += (learning_rate * errorsignal_hidden[y] * 301 input[pattern][x]/length); 302 } 303 } 304 305 // ADJUST BIASES FOR OUTPUT UNITS 306 for(x=0; x<hidden_array_size; x++) { 307 bias[x] += (learning_rate * errorsignal_hidden[x] / length); 308 } 309 return; 310 } 311 312 int compare_output_to_target() 313 { 314 register int y,z; 315 register double temp, error = 0.0; 316 temp = target[ytemp][ztemp] - output[ytemp][ztemp]; 317 if (temp < 0) error -= temp; 318 else error += temp; 319 if(error > max_error_tollerance) return 0; 320 error = 0.0; 321 for(y=0; y < number_of_input_patterns; y++) { 322 for(z=0; z < output_array_size; z++) { 323 temp = target[y][z] - output[y][z]; 324 if (temp < 0) error -= temp; 325 else error += temp; 326 if(error > max_error_tollerance) { 327 ytemp = y; 328 ztemp = z; 329 return 0; 330 } 331 error = 0.0; 332 } 333 } 334 return 1; 335 } 336 337 void save_data(char *argres) { 338 int x, y; 339 ofstream out; 340 out.open(argres); 341 if(!out) { cout << endl << "failed to save file" << endl; return; } 342 out << input_array_size << endl; 343 out << hidden_array_size << endl; 344 out << output_array_size << endl; 345 out << learning_rate << endl; 346 out << number_of_input_patterns << endl << endl; 347 for(x=0; x<bias_array_size; x++) out << bias[x] << ‘ ‘; 348 out << endl << endl; 349 for(x=0; x<input_array_size; x++) { 350 for(y=0; y<hidden_array_size; y++) out << weight_i_h[x][y] << ‘ ‘; 351 } 352 out << endl << endl; 353 for(x=0; x<hidden_array_size; x++) { 354 for(y=0; y<output_array_size; y++) out << weight_h_o[x][y] << ‘ ‘; 355 } 356 out << endl << endl; 357 for(x=0; x<number_of_input_patterns; x++) { 358 for(y=0; y<input_array_size; y++) out << input[x][y] << ‘ ‘; 359 out << endl; 360 } 361 out << endl; 362 for(x=0; x<number_of_input_patterns; x++) { 363 for(y=0; y<output_array_size; y++) out << target[x][y] << ‘ ‘; 364 out << endl; 365 } 366 out.close(); 367 cout << endl << "data saved" << endl; 368 return; 369 } 370 371 void make() 372 { 373 int x, y, z; 374 double inpx, bias_array_size, input_array_size, hidden_array_size, output_array_size; 375 char makefilename[128]; 376 cout << endl << "enter name of new data file: "; 377 cin >> makefilename; 378 ofstream out; 379 out.open(makefilename); 380 if(!out) { cout << endl << "failed to open file" << endl; return;} 381 cout << "how many input units? "; 382 cin >> input_array_size; 383 out << input_array_size << endl; 384 cout << "how many hidden units? "; 385 cin >> hidden_array_size; 386 out << hidden_array_size << endl; 387 cout << "how many output units? "; 388 cin >> output_array_size; 389 out << output_array_size << endl; 390 bias_array_size = hidden_array_size + output_array_size; 391 cout << endl << "Learning rate: "; 392 cin >> inpx; 393 out << inpx << endl; 394 cout << endl << "Number of input patterns: "; 395 cin >> z; 396 out << z << endl << endl; 397 for(x=0; x<bias_array_size; x++) out << (1.0 - (2.0 * bedlam((long*)(gaset)))) << ‘ ‘; 398 out << endl << endl; 399 for(x=0; x<input_array_size; x++) { 400 for(y=0; y<hidden_array_size; y++) out << (1.0 - (2.0 * bedlam((long*)(gaset)))) << ‘ ‘; 401 } 402 out << endl << endl; 403 for(x=0; x<hidden_array_size; x++) { 404 for(y=0; y<output_array_size; y++) out << (1.0 - (2.0 * bedlam((long*)(gaset)))) << ‘ ‘; 405 } 406 out << endl << endl; 407 for(x=0; x < z; x++) { 408 cout << endl << "input pattern " << (x + 1) << endl; 409 for(y=0; y<input_array_size; y++) { 410 cout << (y+1) << ": "; 411 cin >> inpx; 412 out << inpx << ‘ ‘; 413 } 414 out << endl; 415 } 416 out << endl; 417 for(x=0; x < z; x++) { 418 cout << endl << "target output pattern " << (x+1) << endl; 419 for(y=0; y<output_array_size; y++) { 420 cout << (y+1) << ": "; 421 cin >> inpx; 422 out << inpx << ‘ ‘; 423 } 424 out << endl; 425 } 426 out.close(); 427 cout << endl << "data saved, to work with this new data file you first have to load it" << endl; 428 return; 429 } 430 431 float bedlam(long *idum) 432 { 433 int xj; 434 long xk; 435 static long iy=0; 436 static long iv[NTAB]; 437 float temp; 438 439 if(*idum <= 0 || !iy) 440 { 441 if(-(*idum) < 1) 442 { 443 *idum = 1 + *idum; 444 } 445 else 446 { 447 *idum = -(*idum); 448 } 449 for(xj = NTAB+7; xj >= 0; xj--) 450 { 451 xk = (*idum) / IQ; 452 *idum = IA * (*idum - xk * IQ) - IR * xk; 453 if(*idum < 0) 454 { 455 *idum += IM; 456 } 457 if(xj < NTAB) 458 { 459 iv[xj] = *idum; 460 } 461 } 462 iy = iv[0]; 463 } 464 465 xk = (*idum) / IQ; 466 *idum = IA * (*idum - xk * IQ) - IR * xk; 467 if(*idum < 0) 468 { 469 *idum += IM; 470 } 471 xj = iy / NDIV; 472 iy = iv[xj]; 473 iv[xj] = *idum; 474 475 if((temp=AM*iy) > RNMX) 476 { 477 return(RNMX); 478 } 479 else 480 { 481 return(temp); 482 } 483 } 484 485 void test() 486 { 487 pattern = 0; 488 while(pattern == 0) { 489 cout << endl << endl << "There are " << number_of_input_patterns << " input patterns in the file," << endl << "enter a number within this range: "; 490 pattern = getnumber(); 491 } 492 pattern--; 493 forward_pass(pattern); 494 output_to_screen(); 495 return; 496 } 497 498 void output_to_screen() 499 { 500 int x; 501 cout << endl << "Output pattern:" << endl; 502 for(x=0; x<output_array_size; x++) { 503 cout << endl << (x+1) << ": " << output[pattern][x] << " binary: "; 504 if(output[pattern][x] >= 0.9) cout << "1"; 505 else if(output[pattern][x]<=0.1) cout << "0"; 506 else cout << "intermediate value"; 507 } 508 cout << endl; 509 return; 510 } 511 512 int getnumber() 513 { 514 int a, b = 0; 515 char c, d[5]; 516 while(b<4) { 517 do { c = getch(); } while (c != ‘1‘ && c != ‘2‘ && c != ‘3‘ && c != ‘4‘ && c != ‘5‘ && c != ‘6‘ && c != ‘7‘ && c != ‘8‘ && c != ‘9‘ && c != ‘0‘ && toascii(c) != 13); 518 if(toascii(c)==13) break; 519 if(toascii(c)==27) return 0; 520 d[b] = c; 521 cout << c; 522 b++; 523 } 524 d[b] = ‘\0‘; 525 a = atoi(d); 526 if(a < 0 || a > number_of_input_patterns) a = 0; 527 return a; 528 } 529 530 void get_file_name() 531 { 532 cout << endl << "enter name of file to load: "; 533 cin >> filename; 534 return; 535 } 536 537 void print_data() 538 { 539 char choice; 540 if (file_loaded == 0) 541 { 542 cout << endl 543 << "there is no data loaded into memory" 544 << endl; 545 return; 546 } 547 cout << endl << "1. print data to screen" << endl; 548 cout << "2. print data to file" << endl; 549 cout << "3. return to main menu" << endl << endl; 550 cout << "Enter your choice (1-3)" << endl; 551 do { choice = getch(); } while (choice != ‘1‘ && choice != ‘2‘ && choice != ‘3‘); 552 switch(choice) { 553 case ‘1‘: print_data_to_screen(); 554 break; 555 case ‘2‘: print_data_to_file(); 556 break; 557 case ‘3‘: return; 558 }; 559 return; 560 } 561 562 563 void print_data_to_screen() { 564 register int x, y; 565 cout << endl << endl << "DATA FILE: " << filename << endl; 566 cout << "learning rate: " << learning_rate << endl; 567 cout << "input units: " << input_array_size << endl; 568 cout << "hidden units: " << hidden_array_size << endl; 569 cout << "output units: " << output_array_size << endl; 570 cout << "number of input and target output patterns: " << number_of_input_patterns << endl << endl; 571 cout << "INPUT AND TARGET OUTPUT PATTERNS:"; 572 for(x=0; x<number_of_input_patterns; x++) { 573 cout << endl << "input pattern: " << (x+1) << endl; 574 for(y=0; y<input_array_size; y++) cout << input[x][y] << " "; 575 cout << endl << "target output pattern: " << (x+1) << endl; 576 for(y=0; y<output_array_size; y++) cout << target[x][y] << " "; 577 } 578 cout << endl << endl << "BIASES:" << endl; 579 for(x=0; x<hidden_array_size; x++) { 580 cout << "bias of hidden unit " << (x+1) << ": " << bias[x]; 581 if(x<output_array_size) cout << " bias of output unit " << (x+1) << ": " << bias[x+hidden_array_size]; 582 cout << endl; 583 } 584 cout << endl << "WEIGHTS:" << endl; 585 for(x=0; x<input_array_size; x++) { 586 for(y=0; y<hidden_array_size; y++) cout << "i_h[" << x << "][" << y << "]: " << weight_i_h[x][y] << endl; 587 } 588 for(x=0; x<hidden_array_size; x++) { 589 for(y=0; y<output_array_size; y++) cout << "h_o[" << x << "][" << y << "]: " << weight_h_o[x][y] << endl; 590 } 591 return; 592 } 593 594 void print_data_to_file() 595 { 596 char printfile[128]; 597 cout << endl << "enter name of file to print data to: "; 598 cin >> printfile; 599 ofstream out; 600 out.open(printfile); 601 if(!out) { cout << endl << "failed to open file"; return; } 602 register int x, y; 603 out << endl << endl << "DATA FILE: " << filename << endl; 604 out << "input units: " << input_array_size << endl; 605 out << "hidden units: " << hidden_array_size << endl; 606 out << "output units: " << output_array_size << endl; 607 out << "learning rate: " << learning_rate << endl; 608 out << "number of input and target output patterns: " << number_of_input_patterns << endl << endl; 609 out << "INPUT AND TARGET OUTPUT PATTERNS:"; 610 for(x=0; x<number_of_input_patterns; x++) { 611 out << endl << "input pattern: " << (x+1) << endl; 612 for(y=0; y<input_array_size; y++) out << input[x][y] << " "; 613 out << endl << "target output pattern: " << (x+1) << endl; 614 for(y=0; y<output_array_size; y++) out << target[x][y] << " "; 615 } 616 out << endl << endl << "BIASES:" << endl; 617 for(x=0; x<hidden_array_size; x++) { 618 out << "bias of hidden unit " << (x+1) << ": " << bias[x]; 619 if(x<output_array_size) out << " bias of output unit " << (x+1) << ": " << bias[x+hidden_array_size]; 620 out << endl; 621 } 622 out << endl << "WEIGHTS:" << endl; 623 for(x=0; x<input_array_size; x++) { 624 for(y=0; y<hidden_array_size; y++) out << "i_h[" << x << "][" << y << "]: " << weight_i_h[x][y] << endl; 625 } 626 for(x=0; x<hidden_array_size; x++) { 627 for(y=0; y<output_array_size; y++) out << "h_o[" << x << "][" << y << "]: " << weight_h_o[x][y] << endl; 628 } 629 out.close(); 630 cout << endl << "data has been printed to " << printfile << endl; 631 return; 632 } 633 634 void change_learning_rate() 635 { 636 if (file_loaded == 0) 637 { 638 cout << endl 639 << "there is no data loaded into memory" 640 << endl; 641 return; 642 } 643 cout << endl << "actual learning rate: " << learning_rate << " new value: "; 644 cin >> learning_rate; 645 return; 646 } 647 648 void compute_output_pattern() 649 { 650 if (file_loaded == 0) 651 { 652 cout << endl 653 << "there is no data loaded into memory" 654 << endl; 655 return; 656 } 657 char choice; 658 cout << endl << endl << "1. load trained input pattern into network" << endl; 659 cout << "2. load custom input pattern into network" << endl; 660 cout << "3. go back to main menu" << endl << endl; 661 cout << "Enter your choice (1-3)" << endl; 662 do { choice = getch(); } while (choice != ‘1‘ && choice != ‘2‘ && choice != ‘3‘); 663 switch(choice) { 664 case ‘1‘: test(); 665 break; 666 case ‘2‘: custom(); 667 break; 668 case ‘3‘: return; 669 }; 670 } 671 672 void custom() 673 { 674 _control87 (MCW_EM, MCW_EM); 675 char filename[128]; 676 register double temp=0; 677 register int x,y; 678 double *custom_input = new double [input_array_size]; 679 if(!custom_input) 680 { 681 cout << endl << "memory problem!"; 682 return; 683 } 684 double *custom_output = new double [output_array_size]; 685 if(!custom_output) 686 { 687 delete [] custom_input; 688 cout << endl << "memory problem!"; 689 return; 690 } 691 cout << endl << endl << "enter file that contains test input pattern: "; 692 cin >> filename; 693 ifstream in(filename); 694 if(!in) { cout << endl << "failed to load data file" << endl; return; } 695 for(x = 0; x < input_array_size; x++) { 696 in >> custom_input[x]; 697 } 698 for(y=0; y<hidden_array_size; y++) { 699 for(x=0; x<input_array_size; x++) { 700 temp += (custom_input[x] * weight_i_h[x][y]); 701 } 702 hidden[y] = (1.0 / (1.0 + exp(-1.0 * (temp + bias[y])))); 703 temp = 0; 704 } 705 for(y=0; y<output_array_size; y++) { 706 for(x=0; x<hidden_array_size; x++) { 707 temp += (hidden[x] * weight_h_o[x][y]); 708 } 709 custom_output[y] = (1.0 / (1.0 + exp(-1.0 * (temp + bias[y + hidden_array_size])))); 710 temp = 0; 711 } 712 cout << endl << "Input pattern:" << endl; 713 for(x = 0; x < input_array_size; x++) { 714 cout << "[" << (x + 1) << ": " << custom_input[x] << "] "; 715 } 716 cout << endl << endl << "Output pattern:"; 717 for(x=0; x<output_array_size; x++) { 718 cout << endl << (x+1) << ": " << custom_output[x] << " binary: "; 719 if(custom_output[x] >= 0.9) cout << "1"; 720 else if(custom_output[x]<=0.1) cout << "0"; 721 else cout << "intermediate value"; 722 } 723 cout << endl; 724 delete [] custom_input; 725 delete [] custom_output; 726 return; 727 } 728 729 void clear_memory() 730 { 731 int x; 732 for(x=0; x<number_of_input_patterns; x++) 733 { 734 delete [] input[x]; 735 } 736 delete [] input; 737 delete [] hidden; 738 for(x=0; x<number_of_input_patterns; x++) 739 { 740 delete [] output[x]; 741 } 742 delete [] output; 743 for(x=0; x<number_of_input_patterns; x++) 744 { 745 delete [] target[x]; 746 } 747 delete [] target; 748 delete [] bias; 749 for(x=0; x<input_array_size; x++) 750 { 751 delete [] weight_i_h[x]; 752 } 753 delete [] weight_i_h; 754 for(x=0; x<hidden_array_size; x++) 755 { 756 delete [] weight_h_o[x]; 757 } 758 delete [] weight_h_o; 759 delete [] errorsignal_hidden; 760 delete [] errorsignal_output; 761 file_loaded = 0; 762 return; 763 }
初始化的神经网络的数据文件:
2 3 4 0.5 4 5.747781 -6.045236 1.206744 -41.245163 -0.249886 -0.35452 0.0718 -8.446443 9.25553 -6.50087 7.357942 7.777944 1.238442 15.957281 0.452741 -8.19198 9.140881 29.124746 9.806898 5.859479 -5.09182 -3.475694 -4.896269 6.320669 0.213897 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!explanation of datafile. Can be deleted. Not necessary for network to work!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2 (number of input units) 3 (number of hidden units) 4 (number of output units) 0.5 (learning rate) 4 (number of input and target output patterns) (has to correspond to the amount of patterns at the end of the datafile) 5.747781 -6.045236 1.206744 -41.245163 -0.249886 -0.35452 0.0718 (biases of hidden and output units, first three are biases of the hidden units, last four are biases of the output units) -8.446443 9.25553 -6.50087 7.357942 7.777944 1.238442 (values of weights from input to hidden units) 15.957281 0.452741 -8.19198 9.140881 29.124746 9.806898 5.859479 -5.09182 -3.475694 -4.896269 6.320669 0.213897 (values of weights from hidden to output units) 1 1 (input pattern #1) 1 0 (input pattern #2) 0 1 (input pattern #3) 0 0 (input pattern #4) 1 1 0 1 (target output pattern #1) 0 1 1 0 (target output pattern #2) 0 1 1 1 (target output pattern #3) 0 0 0 1 (target output pattern #4) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! end of explanation of datafile. !!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
按照数据输入说明,可以再b.txt文件中保存输入数据[0, 1],对应的输入结果如下:
可以看到,输入[0,1]得到的结果为0110,与训练时候的结果一直。
最后,本代码没有深入测试过,同时也只有一个隐层,所以建议只用来配合梳理算法原理用。
deep learning(1)BP神经网络原理与练习,布布扣,bubuko.com
标签:style blog http color 文件 os
原文地址:http://www.cnblogs.com/zhxfl/p/3841746.html