标签:
一.
我们知道,每个自然数(不包括0和1)都有2个以上的因数,因数最少的是质数(也叫素数),质数的因数是1和它本身。非质数的自然数也叫合数,它们都含有3个以上(含3个)的因数。
1、怎样求一个数有多少个因数?
对于一个已知的自然数,要求出它有多少个因数,可用下列方法:
首先将这个已知数分解质因数,将此数化成几个质数幂的连乘形式,然后把这些质数的指数分别加一,再相乘,求出来的积就是我们要的结果。
例如:求360有多少个因数。
因为360分解质因数可表示为:360=2^3×3^2×5,2、3、5的指数分别是3、2、1,这样360的因数个数可这样计算出:
(3+1)(2+1)(1+1)=24个。
我们知道,360的因数有 1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360正好24个,可见上述计算正确。
2、怎样求出有n个因数的最小自然数?
同样拥有n个(n为确定的数)因数的自然数可以有多个不同的数,如何求出这些数中的最小数?
这是与上一个问题相反的要求,是上一题的逆运算。
比如求有24个因数的最小数是多少?
根据上一问题解决过程的启示,可以这样做,先将24分解因式,把24表示成几个数连乘积的形式,再把这几个数各减去1,作为质数2、3、5、7......的指数,求出这些带指数的数连乘积,试算出最小数即可。具体做法是:
因为:24=4×6, 24=3×8, 24=4×3×2,
现在分别以这三种表示法试求出目标数x:
(1)、24=4×6,4-1=3,6-1=5
X=2^5×3^3=864
(2)、24=3×8,3-1=2,8-1=7
X=2^7×3^2=1152
(3)24=4×3×2,4-1=3, 3-1=2, 2-1=1
X=2^3×3^2×5=360
综合(1)、(2)、(3)可知360是有24个因数的最小数。
二。
6=2·3=(2^1)·(3^1),
所以6的约数的个数:1,2,3,6共4个, 也可如此算:(1+1)(1+1)=4
所有约数的和1+3+2+6 ,也可如此算:(2^0+2^1)(3^0+3^1)
原理:因为6是由一个2个一个3组成,2可以出现0次、1次,3可以出现0次、1次,所以所有约数之和=(2^0+2^1)(3^0+3^1)
标签:
原文地址:http://my.oschina.net/u/2400412/blog/499268