1.题目描述:点击打开链接
2.解题思路:本题利用Treap树实现的名次树来完成这三种操作。由于操作比较复杂,因此我们利用离线算法来解决。可以实现把所有的D操作执行完,得到剩下的图,接着按照逆序逐步插入边,并在恰当的时机执行Q操作和C操作。用一棵名次树维护一个连通分量的点权,则C操作对应于名次树的一次修改操作(可以用一次删除和一次插入来实现),Q操作对应Kth操作,而执行D操作时,如果两个端点已知是同一个连通分量则无影响,否则将2个端点对应的2棵名次树合并。这里我们利用启发式合并,让结点数较小的树合并到结点数较多的树中,假设结点数分别为n1,n2,那么时间复杂度为O(n1*logn2)。由于树的结点总数不超过n,任意结点至多移动了log2N 次,每次移动需要logN的时间,因此总的时间复杂度为O(N(logN)^2)。
3.代码:
#include<iostream>
#include<algorithm>
#include<cassert>
#include<string>
#include<sstream>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<functional>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define me(s) memset(s,0,sizeof(s))
#define rep(i,n) for(int i=0;i<(n);i++)
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
//typedef pair <int, int> P;
struct Node {
Node *ch[2]; // 左右子树
int r; // 随机优先级
int v; // 值
int s; // 结点总数
Node(int v):v(v) { ch[0] = ch[1] = NULL; r = rand(); s = 1; }
int cmp(int x) const {
if (x == v) return -1;
return x < v ? 0 : 1;
}
void maintain() {
s = 1;
if(ch[0] != NULL) s += ch[0]->s;
if(ch[1] != NULL) s += ch[1]->s;
}
};
void rotate(Node* &o, int d) {
Node* k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o;
o->maintain(); k->maintain(); o = k;
}
void insert(Node* &o, int x) {
if(o == NULL) o = new Node(x);
else {
int d = (x < o->v ? 0 : 1); // 不要用cmp函数,因为可能会有相同结点
insert(o->ch[d], x);
if(o->ch[d]->r > o->r) rotate(o, d^1);
}
o->maintain();
}
void remove(Node* &o, int x) {
int d = o->cmp(x);
int ret = 0;
if(d == -1) {
Node* u = o;
if(o->ch[0] != NULL && o->ch[1] != NULL) {
int d2 = (o->ch[0]->r > o->ch[1]->r ? 1 : 0);
rotate(o, d2); remove(o->ch[d2], x);
} else {
if(o->ch[0] == NULL) o = o->ch[1]; else o = o->ch[0];
delete u;
}
} else
remove(o->ch[d], x);
if(o != NULL) o->maintain();
}
const int maxc = 500000 + 10;
struct Command {
char type;
int x, p; // 根据type, p代表k或者v
} commands[maxc];
const int maxn = 20000 + 10;
const int maxm = 60000 + 10;
int n, m, weight[maxn], from[maxm], to[maxm], removed[maxm];
// 并查集相关
int pa[maxn];
int findset(int x) { return pa[x] != x ? pa[x] = findset(pa[x]) : x; }
// 名次树相关
Node* root[maxn]; // Treap
int kth(Node* o, int k) { // 第k大的值
if(o == NULL || k <= 0 || k > o->s) return 0;
int s = (o->ch[1] == NULL ? 0 : o->ch[1]->s);
if(k == s+1) return o->v;
else if(k <= s) return kth(o->ch[1], k);
else return kth(o->ch[0], k-s-1);
}
void mergeto(Node* &src, Node* &dest) {
if(src->ch[0] != NULL) mergeto(src->ch[0], dest);
if(src->ch[1] != NULL) mergeto(src->ch[1], dest);
insert(dest, src->v);
delete src;
src = NULL;
}
void removetree(Node* &x) {
if(x->ch[0] != NULL) removetree(x->ch[0]);
if(x->ch[1] != NULL) removetree(x->ch[1]);
delete x;
x = NULL;
}
// 主程序相关
void add_edge(int x) {
int u = findset(from[x]), v = findset(to[x]);
if(u != v) {
if(root[u]->s < root[v]->s) { pa[u] = v; mergeto(root[u], root[v]); }
else { pa[v] = u; mergeto(root[v], root[u]); }
}
}
int query_cnt;
long long query_tot;
void query(int x, int k) {
query_cnt++;
query_tot += kth(root[findset(x)], k);
}
void change_weight(int x, int v) {
int u = findset(x);
remove(root[u], weight[x]);
insert(root[u], v);
weight[x] = v;
}
int main() {
int kase = 0;
while(scanf("%d%d", &n, &m) == 2 && n) {
for(int i = 1; i <= n; i++) scanf("%d", &weight[i]);
for(int i = 1; i <= m; i++) scanf("%d%d", &from[i], &to[i]);
memset(removed, 0, sizeof(removed));
// 读命令
int c = 0;
for(;;) {
char type;
int x, p = 0, v = 0;
scanf(" %c", &type);
if(type == 'E') break;
scanf("%d", &x);
if(type == 'D') removed[x] = 1;
if(type == 'Q') scanf("%d", &p);
if(type == 'C') {
scanf("%d", &v);
p = weight[x];
weight[x] = v;
}
commands[c++] = (Command){ type, x, p };
}
// 最终的图
for(int i = 1; i <= n; i++) {
pa[i] = i; if(root[i] != NULL) removetree(root[i]);
root[i] = new Node(weight[i]);
}
for(int i = 1; i <= m; i++) if(!removed[i]) add_edge(i);
// 反向操作
query_tot = query_cnt = 0;
for(int i = c-1; i >= 0; i--) {
if(commands[i].type == 'D') add_edge(commands[i].x);
if(commands[i].type == 'Q') query(commands[i].x, commands[i].p);
if(commands[i].type == 'C') change_weight(commands[i].x, commands[i].p);
}
printf("Case %d: %.6lf\n", ++kase, query_tot / (double)query_cnt);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u014800748/article/details/48119623