1.题目描述:点击打开链接
2.解题思路:本题利用Treap树实现的名次树来完成这三种操作。由于操作比较复杂,因此我们利用离线算法来解决。可以实现把所有的D操作执行完,得到剩下的图,接着按照逆序逐步插入边,并在恰当的时机执行Q操作和C操作。用一棵名次树维护一个连通分量的点权,则C操作对应于名次树的一次修改操作(可以用一次删除和一次插入来实现),Q操作对应Kth操作,而执行D操作时,如果两个端点已知是同一个连通分量则无影响,否则将2个端点对应的2棵名次树合并。这里我们利用启发式合并,让结点数较小的树合并到结点数较多的树中,假设结点数分别为n1,n2,那么时间复杂度为O(n1*logn2)。由于树的结点总数不超过n,任意结点至多移动了log2N 次,每次移动需要logN的时间,因此总的时间复杂度为O(N(logN)^2)。
3.代码:
#include<iostream> #include<algorithm> #include<cassert> #include<string> #include<sstream> #include<set> #include<bitset> #include<vector> #include<stack> #include<map> #include<queue> #include<deque> #include<cstdlib> #include<cstdio> #include<cstring> #include<cmath> #include<ctime> #include<cctype> #include<functional> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; #define me(s) memset(s,0,sizeof(s)) #define rep(i,n) for(int i=0;i<(n);i++) typedef long long ll; typedef unsigned int uint; typedef unsigned long long ull; //typedef pair <int, int> P; struct Node { Node *ch[2]; // 左右子树 int r; // 随机优先级 int v; // 值 int s; // 结点总数 Node(int v):v(v) { ch[0] = ch[1] = NULL; r = rand(); s = 1; } int cmp(int x) const { if (x == v) return -1; return x < v ? 0 : 1; } void maintain() { s = 1; if(ch[0] != NULL) s += ch[0]->s; if(ch[1] != NULL) s += ch[1]->s; } }; void rotate(Node* &o, int d) { Node* k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o; o->maintain(); k->maintain(); o = k; } void insert(Node* &o, int x) { if(o == NULL) o = new Node(x); else { int d = (x < o->v ? 0 : 1); // 不要用cmp函数,因为可能会有相同结点 insert(o->ch[d], x); if(o->ch[d]->r > o->r) rotate(o, d^1); } o->maintain(); } void remove(Node* &o, int x) { int d = o->cmp(x); int ret = 0; if(d == -1) { Node* u = o; if(o->ch[0] != NULL && o->ch[1] != NULL) { int d2 = (o->ch[0]->r > o->ch[1]->r ? 1 : 0); rotate(o, d2); remove(o->ch[d2], x); } else { if(o->ch[0] == NULL) o = o->ch[1]; else o = o->ch[0]; delete u; } } else remove(o->ch[d], x); if(o != NULL) o->maintain(); } const int maxc = 500000 + 10; struct Command { char type; int x, p; // 根据type, p代表k或者v } commands[maxc]; const int maxn = 20000 + 10; const int maxm = 60000 + 10; int n, m, weight[maxn], from[maxm], to[maxm], removed[maxm]; // 并查集相关 int pa[maxn]; int findset(int x) { return pa[x] != x ? pa[x] = findset(pa[x]) : x; } // 名次树相关 Node* root[maxn]; // Treap int kth(Node* o, int k) { // 第k大的值 if(o == NULL || k <= 0 || k > o->s) return 0; int s = (o->ch[1] == NULL ? 0 : o->ch[1]->s); if(k == s+1) return o->v; else if(k <= s) return kth(o->ch[1], k); else return kth(o->ch[0], k-s-1); } void mergeto(Node* &src, Node* &dest) { if(src->ch[0] != NULL) mergeto(src->ch[0], dest); if(src->ch[1] != NULL) mergeto(src->ch[1], dest); insert(dest, src->v); delete src; src = NULL; } void removetree(Node* &x) { if(x->ch[0] != NULL) removetree(x->ch[0]); if(x->ch[1] != NULL) removetree(x->ch[1]); delete x; x = NULL; } // 主程序相关 void add_edge(int x) { int u = findset(from[x]), v = findset(to[x]); if(u != v) { if(root[u]->s < root[v]->s) { pa[u] = v; mergeto(root[u], root[v]); } else { pa[v] = u; mergeto(root[v], root[u]); } } } int query_cnt; long long query_tot; void query(int x, int k) { query_cnt++; query_tot += kth(root[findset(x)], k); } void change_weight(int x, int v) { int u = findset(x); remove(root[u], weight[x]); insert(root[u], v); weight[x] = v; } int main() { int kase = 0; while(scanf("%d%d", &n, &m) == 2 && n) { for(int i = 1; i <= n; i++) scanf("%d", &weight[i]); for(int i = 1; i <= m; i++) scanf("%d%d", &from[i], &to[i]); memset(removed, 0, sizeof(removed)); // 读命令 int c = 0; for(;;) { char type; int x, p = 0, v = 0; scanf(" %c", &type); if(type == 'E') break; scanf("%d", &x); if(type == 'D') removed[x] = 1; if(type == 'Q') scanf("%d", &p); if(type == 'C') { scanf("%d", &v); p = weight[x]; weight[x] = v; } commands[c++] = (Command){ type, x, p }; } // 最终的图 for(int i = 1; i <= n; i++) { pa[i] = i; if(root[i] != NULL) removetree(root[i]); root[i] = new Node(weight[i]); } for(int i = 1; i <= m; i++) if(!removed[i]) add_edge(i); // 反向操作 query_tot = query_cnt = 0; for(int i = c-1; i >= 0; i--) { if(commands[i].type == 'D') add_edge(commands[i].x); if(commands[i].type == 'Q') query(commands[i].x, commands[i].p); if(commands[i].type == 'C') change_weight(commands[i].x, commands[i].p); } printf("Case %d: %.6lf\n", ++kase, query_tot / (double)query_cnt); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u014800748/article/details/48119623