标签:
题目大意:有n个星球,你的任务是用最短的时间把k个超级计算机从S星球运送到T星球。每个超级计算机需要一艘飞船来运输,行星之间有m条双向隧道,每条隧道需要一天时间来通过,且不能有两艘飞船同时使用同一条隧道,隧道不会连接两个相同的行星,且每一对行星之间最多只有一条隧道
解题思路:按照大白书上的思路是拆点
比如运送的时间为T,那么就把每个点u拆成T + 1个,分别为u0, u1 … uT,分别对应的是第i天的u星球
对于所给的每条边(u,v),假设是第i天,就连边ui –>vi+1和vi–>ui+1,两条边的容量都为1
还得添加一个点ui—>ui+1,容量为INF,表示飞船该天没有前行
计算过程的话,就逐步扩大图,一天一天的枚举,一天一天的扩大,直到流量为k为止
这里的话得注意一点,在某时刻a–>bi+1和bi–>ai+1同时有流量是不允许的,这里的话,如果出现了两个方向都有流量了,那我们就相当于把这两个飞船分别停留在a星球和b星球上各一天,这样就不会矛盾了
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define M 1000010
#define N 10010
#define INF 0x3f3f3f3f
struct Edge{
int u, v, cap, flow, next;
}E[M];
struct Dinic{
int head[N], d[N];
int tot, sink, source;
void init() {
memset(head, -1, sizeof(head));
tot = 0;
}
inline void AddEdge(int u, int v, int cap) {
E[tot].u = u; E[tot].v = v; E[tot].cap = cap; E[tot].flow = 0; E[tot].next = head[u]; head[u] = tot++;
u = u ^ v; v = u ^ v; u = u ^ v;
E[tot].u = u; E[tot].v = v; E[tot].cap = 0; E[tot].flow = 0; E[tot].next = head[u]; head[u] = tot++;
}
inline bool bfs(int s) {
int u, v;
memset(d, 0, sizeof(d));
queue<int> Q;
Q.push(s);
d[s] = 1;
while (!Q.empty()) {
u = Q.front(); Q.pop();
if (u == sink) return true;
for (int i = head[u]; ~i; i = E[i].next) {
v = E[i].v;
if (!d[v] && E[i].cap - E[i].flow > 0) {
d[v] = d[u] + 1;
Q.push(v);
}
}
}
return false;
}
int dfs(int x, int a) {
if (x == sink || a == 0)
return a;
int f, flow = 0;
for (int i = head[x]; ~i; i = E[i].next) {
int v = E[i].v;
if (d[v] == d[x] + 1 && E[i].cap - E[i].flow > 0) {
f = dfs(v, min(a, E[i].cap - E[i].flow));
E[i].flow += f;
E[i^1].flow -= f;
flow += f;
a -= f;
if (!a) break;
}
}
if (flow == 0) d[x] = 0;
return flow;
}
int Maxflow(int source, int sink, int need) {
int flow = 0;
this->sink = sink;
while (bfs(source)) {
flow += dfs(source, need - flow);
if (flow >= need) return flow;
}
return flow;
}
};
Dinic dinic;
struct Node {
int x, y;
}node[N];
int n, m, k, s, t;
int pos[N];
bool vis[N];
void print(int cnt) {
for (int i = 1; i <= k; i++) pos[i] = s;
printf("%d\n", cnt);
for (int i = 1; i <= cnt; i++) {
vector<int> u, v;
memset(vis, 0, sizeof(vis));
for (int j = 0; j < 4 * m; j += 4) {
int p = j + (i - 1) * 4 * m + n * i * 2;
//正向有流量,反向没流量,也就是u-->v
if (E[p].flow && !E[p+2].flow) {
u.push_back(E[p ^ 1].v - (i - 1) * n);
v.push_back(E[p].v - i * n);
}//反向有流量,正向没流量,也就是v-->u,这样的话就排除了两边都有流量的情况,相当于两点交换了,也就是两艘飞船待在原地了
else if (!E[p].flow && E[p + 2].flow) {
u.push_back(E[(p + 2) ^ 1].v - (i - 1) * n);
v.push_back(E[p + 2].v - i * n);
}
}
printf("%d", u.size());
for (int p = 0; p < u.size(); p++)
for (int j = 1; j <= k; j++) {
if (!vis[j] && pos[j] == u[p]) {
vis[j] = 1;
printf(" %d %d", j, v[p]);
pos[j] = v[p];
break;
}
}
printf("\n");
}
}
void solve() {
for (int i = 0; i < m; i++) scanf("%d%d", &node[i].x, &node[i].y);
int cnt = 0, Maxflow = 0, sink = t;
dinic.init();
while (Maxflow < k) {
++cnt;
//待在原地
for (int i = 1; i <= n; i++) dinic.AddEdge(i + (cnt - 1) * n, i + cnt * n, INF);
//边
for (int i = 0; i < m; i++) {
dinic.AddEdge(node[i].x + (cnt - 1) * n, node[i].y + cnt * n, 1);
dinic.AddEdge(node[i].y + (cnt - 1) * n, node[i].x + cnt * n, 1);
}
sink += n;
Maxflow += dinic.Maxflow(s, sink, k - Maxflow);
}
print(cnt);
}
int main() {
while (scanf("%d%d%d%d%d", &n, &m, &k, &s, &t) != EOF) solve();
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
UVALive - 2957 Bring Them There(最大流 图论建模)
标签:
原文地址:http://blog.csdn.net/l123012013048/article/details/48117755