标签:
题目大意:有n个点,m条边,每条边的容量为ci,费用为ai* x^2(x为流量,ai为所给系数)
现在问能否将k个单位的货物从点1运输到点n,且费用最小
解题思路:拆边,将每条边拆成ci条边,每条边的费用分别为ai * 1, ai * 3, ai * 5…容量都为1,在容量相同的情况下,会选择费用少的流,这样流过的边累加起来的费用刚好为 ai * 流量^2
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
#define N 1010
#define INF 0x3f3f3f3f
struct Edge{
int from, to, cap, flow ,cost;
Edge() {}
Edge(int from, int to, int cap, int flow, int cost):from(from), to(to), cap(cap), flow(flow), cost(cost) {}
};
struct MCMF{
int n, m, source, sink;
int flow, cost;
vector<Edge> edges;
vector<int> G[N];
int d[N], f[N], p[N];
bool vis[N];
void init(int n) {
this->n = n;
for (int i = 0; i <= n; i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BellmanFord(int s, int t, int &flow, int &cost, int need) {
for (int i = 0; i <= n; i++)
d[i] = INF;
memset(vis, 0, sizeof(vis));
vis[s] = 1; d[s] = 0; f[s] = need; p[s] = 0;
queue<int> Q;
Q.push(s);
while (!Q.empty()) {
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
f[e.to] = min(f[u], e.cap - e.flow);
if (!vis[e.to]) {
vis[e.to] = true;
Q.push(e.to);
}
}
}
}
if (d[t] == INF)
return false;
flow += f[t];
cost += d[t];
int u = t;
while (u != s) {
edges[p[u]].flow += f[t];
edges[p[u] ^ 1].flow -= f[t];
u = edges[p[u]].from;
}
return true;
}
void Mincost(int s, int t, int need) {
flow = 0, cost = 0;
while (BellmanFord(s, t, flow, cost, need - flow)) {
if (need == flow) break;
}
}
};
MCMF mcmf;
int n, m, k;
int num[6] = {0, 1, 3, 5, 7, 9};
void solve() {
int u, v, a, c;
mcmf.init(n);
for (int i = 0; i < m; i++) {
scanf("%d%d%d%d", &u, &v, &a, &c);
for (int j = 1; j <= c; j++) mcmf.AddEdge(u, v, 1, num[j] * a);
}
mcmf.Mincost(1, n, k);
if (mcmf.flow == k)
printf("%d\n", mcmf.cost);
else
printf("-1\n");
}
int main() {
while (scanf("%d%d%d", &n, &m, &k) != EOF) solve();
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
UVALive - 5095 Transportation(拆边+费用流)
标签:
原文地址:http://blog.csdn.net/l123012013048/article/details/48129121