标签:
For example,
If n = 4 and k = 2, a solution is:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
It is also a backstracking tagged problem.
1 public List<List<Integer>> combine(int n, int k) { 2 List<List<Integer>> rs = new ArrayList<List<Integer>>(); 3 dfs(rs, n, 1, new ArrayList<Integer>(), k); 4 return rs; 5 } 6 private void dfs(List<List<Integer>> rs, int n, int start, List<Integer> path, int k ){ 7 //the terminate condition, return when every process is finished 8 if(k==0){ 9 rs.add(new ArrayList<Integer>(path)); 10 return; 11 } 12 //start from 1 to n (i.e. 1,2,3, ... ,n) 13 for(int i = start; i<=n; i++){ 14 path.add(i); 15 dfs(rs, n, i+1, path, k-1); 16 path.remove(path.size() - 1); 17 } 18 19 }
A mapping of digit to letters (just like on the telephone buttons) is given below.
Input:Digit string "23"
Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].
1 public class Solution { 2 3 private String[] button; 4 public List<String> letterCombinations(String digits) { 5 button = new String[10]; 6 button[0] = ""; 7 button[1] = ""; 8 button[2] = "abc"; 9 button[3] = "def"; 10 button[4] = "ghi"; 11 button[5] = "jkl"; 12 button[6] = "mno"; 13 button[7] = "pqrs"; 14 button[8] = "tuv"; 15 button[9] = "wxyz"; 16 17 List<String> result = new ArrayList<String>(); 18 if (digits == null || digits.length() < 1){ 19 return result; 20 } 21 dfs(digits, 0, "", result); 22 return result; 23 } 24 25 public void dfs(String digits, int start, String path, List<String> result){ 26 if (start >= digits.length()){ 27 result.add(path); 28 return; 29 } 30 String content = button[digits.charAt(start)-‘0‘]; 31 for (int i = 0; i < content.length(); i ++){ 32 dfs(digits, start + 1, path+content.charAt(i), result); 33 } 34 } 35 }
标签:
原文地址:http://www.cnblogs.com/timoBlog/p/4773011.html