标签:
二分图匹配(匈牙利算法)
1。一个二分图中的最大匹配数等于这个图中的最小点覆盖数
König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。
2。最小路径覆盖=最小路径覆盖=|G|-最大匹配数
在一个N*N的有向图中,路径覆盖就是在图中找一些路经,使之覆盖了图中的所有顶点,
且任何一个顶点有且只有一条路径与之关联;(如果把这些路径中的每条路径从它的起始点走到它的终点,
那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.
由上面可以得出:
1.一个单独的顶点是一条路径;
2.如果存在一路径p1,p2,......pk,其中p1 为起点,pk为终点,那么在覆盖图中,顶点p1,p2,......pk不再与其它的
顶点之间存在有向边.
最小路径覆盖就是找出最小的路径条数,使之成为G的一个路径覆盖.
路径覆盖与二分图匹配的关系:最小路径覆盖=|G|-最大匹配数;
3。二分图最大独立集=顶点数-二分图最大匹配
独立集:图中任意两个顶点都不相连的顶点集合。
二分图模板:
模板一:匈牙利算法
/* ************************************************************************** //二分图匹配(匈牙利算法的DFS实现) //初始化:g[][]两边顶点的划分情况 //建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配 //g没有边相连则初始化为0 //uN是匹配左边的顶点数,vN是匹配右边的顶点数 //调用:res=hungary();输出最大匹配数 //优点:适用于稠密图,DFS找增广路,实现简洁易于理解 //时间复杂度:O(VE) //***************************************************************************/ //顶点编号从0开始的 const int MAXN=510; int uN,vN;//u,v数目 int g[MAXN][MAXN]; int linker[MAXN]; bool used[MAXN]; bool dfs(int u)//从左边开始找增广路径 { int v; for(v=0; v<vN; v++) //这个顶点编号从0开始,若要从1开始需要修改 if(g[u][v]&&!used[v]) { used[v]=true; if(linker[v]==-1||dfs(linker[v])) { //找增广路,反向 linker[v]=u; return true; } } return false;//这个不要忘了,经常忘记这句 } int hungary() { int res=0; int u; memset(linker,-1,sizeof(linker)); for(u=0; u<uN; u++) { memset(used,0,sizeof(used)); if(dfs(u)) res++; } return res; } //******************************************************************************/
模板二: Hopcroft-Carp算法
这个算法比匈牙利算法的时间复杂度要小,大数据可以采用这个算法
/* ********************************************* 二分图匹配(Hopcroft-Carp的算法)。 初始化:g[][]邻接矩阵 调用:res=MaxMatch(); Nx,Ny要初始化!!! 时间复杂大为 O(V^0.5 E) 适用于数据较大的二分匹配 需要queue头文件 ********************************************** */ const int MAXN=3000; const int INF=1<<28; int g[MAXN][MAXN],Mx[MAXN],My[MAXN],Nx,Ny; int dx[MAXN],dy[MAXN],dis; bool vst[MAXN]; bool searchP() { queue<int>Q; dis=INF; memset(dx,-1,sizeof(dx)); memset(dy,-1,sizeof(dy)); for(int i=0; i<Nx; i++) if(Mx[i]==-1) { Q.push(i); dx[i]=0; } while(!Q.empty()) { int u=Q.front(); Q.pop(); if(dx[u]>dis) break; for(int v=0; v<Ny; v++) if(g[u][v]&&dy[v]==-1) { dy[v]=dx[u]+1; if(My[v]==-1) dis=dy[v]; else { dx[My[v]]=dy[v]+1; Q.push(My[v]); } } } return dis!=INF; } bool DFS(int u) { for(int v=0; v<Ny; v++) if(!vst[v]&&g[u][v]&&dy[v]==dx[u]+1) { vst[v]=1; if(My[v]!=-1&&dy[v]==dis) continue; if(My[v]==-1||DFS(My[v])) { My[v]=u; Mx[u]=v; return 1; } } return 0; } int MaxMatch() { int res=0; memset(Mx,-1,sizeof(Mx)); memset(My,-1,sizeof(My)); while(searchP()) { memset(vst,0,sizeof(vst)); for(int i=0; i<Nx; i++) if(Mx[i]==-1&&DFS(i)) res++; } return res; } //**************************************************************************/
下面的程序效率很高。是用vector实现邻接表的匈牙利算法。
处理点比较多的效率很高。1500的点都没有问题
/* HDU 1054 用STL中的vector建立邻接表实现匈牙利算法 效率比较高 G++ 578ms 580K */ #include<stdio.h> #include<iostream> #include<algorithm> #include<string.h> #include<vector> using namespace std; //************************************************ const int MAXN=1505;//这个值要超过两边个数的较大者,因为有linker int linker[MAXN]; bool used[MAXN]; vector<int>map[MAXN]; int uN; bool dfs(int u) { for(int i=0; i<map[u].size(); i++) { if(!used[map[u][i]]) { used[map[u][i]]=true; if(linker[map[u][i]]==-1||dfs(linker[map[u][i]])) { linker[map[u][i]]=u; return true; } } } return false; } int hungary() { int u; int res=0; memset(linker,-1,sizeof(linker)); for(u=0; u<uN; u++) { memset(used,false,sizeof(used)); if(dfs(u)) res++; } return res; } //***************************************************** int main() { int u,k,v; int n; while(scanf("%d",&n)!=EOF) { for(int i=0; i<MAXN; i++) map[i].clear(); for(int i=0; i<n; i++) { scanf("%d:(%d)",&u,&k); while(k--) { scanf("%d",&v); map[u].push_back(v); map[v].push_back(u); } } uN=n; printf("%d\n",hungary()/2); } return 0; }
标签:
原文地址:http://www.cnblogs.com/bofengyu/p/4773335.html