码迷,mamicode.com
首页 > 其他好文 > 详细

学习日志---线性回归与logistic回归

时间:2015-08-31 19:54:46      阅读:143      评论:0      收藏:0      [点我收藏+]

标签:机器学习

导说:

都属于广义线性回归范畴。

线性回归分析:一元线性(当个因变量,一次,是条直线);

                       多元线性(因变量有很多个,但也是一次,在空间中就是一个平面);

                       广义线性(高维线性回归,也就是一个超平面)

(都是一次的,因此称为线性回归)

非线性回归分析:非一次的,是曲线,有些可以用线性模型处理,称为广义线性模型,例如Logistic回   

                          归;、

困难:筛选变量(降维技术),避免多重共线性(某一变量依赖于其他几个变量),观察拟合方程,避 

         免过拟合。。。


使用线性回归依据:

对于线性回归,可以使用相关系数判断这些变量是否适合使用线性去拟合:如下

技术分享可以通过柯西不等式证明其值在-1至1之间。

离1或者-1越接近时,则可以说明其线性相关程度越高。正相关与负相关。



学习日志---线性回归与logistic回归

标签:机器学习

原文地址:http://wukong0716.blog.51cto.com/10442773/1690184

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!