标签:
枚举每条边,计算出有多少情况下为凸包的边界,即有多少点在该边的左边。
#include <cstdio> #include <cstring> #include <cmath> #include <vector> #include <complex> #include <algorithm> using namespace std; typedef pair<int,int> pii; typedef long long ll; const double pi = 4 * atan(1); const double eps = 1e-10; inline int dcmp (double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } inline double getDistance (double x, double y) { return sqrt(x * x + y * y); } inline double torad(double deg) { return deg / 180 * pi; } struct Point { ll x, y; double ang; Point (ll x = 0, ll y = 0): x(x), y(y) {} void read () { scanf("%lld%lld", &x, &y); } //void write () { printf("%d %d", x, y); } bool operator < (const Point& u) const { return dcmp(x - u.x) < 0 || (dcmp(x-u.x)==0 && dcmp(y-u.y) < 0); } bool operator > (const Point& u) const { return u < *this; } bool operator == (const Point& u) const { return dcmp(x - u.x) == 0 && dcmp(y - u.y) == 0; } bool operator != (const Point& u) const { return !(*this == u); } bool operator <= (const Point& u) const { return *this < u || *this == u; } bool operator >= (const Point& u) const { return *this > u || *this == u; } Point operator + (const Point& u) { return Point(x + u.x, y + u.y); } Point operator - (const Point& u) { return Point(x - u.x, y - u.y); } Point operator * (const double u) { return Point(x * u, y * u); } Point operator / (const double u) { return Point(x / u, y / u); } double operator * (const Point& u) { return x*u.y - y*u.x; } }; typedef Point Vector; const int maxn = 1005; const int mod = 998244353; int N, pow2[maxn]; Point P[maxn], T[maxn * 2]; ll getCross (Vector a, Vector b) { return a.x * b.y - a.y * b.x; } ll getArea (Point a, Point b, Point c) { return (getCross(b - a, c - a) % mod + mod) % mod; } inline bool cmp(const Point& a, const Point& b) { return a.ang < b.ang; } int main () { pow2[0] = 1; for (int i = 1; i < maxn; i++) pow2[i] = pow2[i-1] * 2 % mod; for (int i = 0; i < maxn; i++) pow2[i] = (pow2[i] - 1 + mod) % mod; int cas; scanf("%d", &cas); while (cas--) { scanf("%d", &N); for (int i = 0; i < N; i++) P[i].read(); ll ans = 0; for (int i = 0; i < N; i++) { int sz = 0; for (int j = 0; j < N; j++) if (i != j) { T[sz] = P[j]; T[sz++].ang = atan2(P[j].y-P[i].y, P[j].x-P[i].x); } for (int j = 0; j < sz; j++) { T[j+sz] = T[j]; T[j+sz].ang += pi * 2; } sort(T, T + sz * 2, cmp); int r = 0; for (int j = 0; j < sz; j++) { while (T[r+1].ang - T[j].ang < pi) r++; ans = (ans + getArea(Point(0, 0), P[i], T[j]) % mod * pow2[r-j]) % mod; } } printf("%lld\n", ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/keshuai19940722/article/details/48143385