标签:
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/ml/ml.hpp> //#include <opencv2/gpu/gpu.hpp> #include <fstream> #include <iomanip> #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/objdetect/objdetect.hpp" using namespace std; using namespace cv; int main() { #if 0 Mat image; image = imread("D:\\dataset\\temp\\6.png"); HOGDescriptor hog; vector<float> v_feature; hog.compute(image, v_feature, cv::Size(8, 8)); //hog.compute(image, v_feature, cv::Size(16, 16)); int featureVecSize = v_feature.size(); cout << "****************************************haha****************" << endl; cout << featureVecSize<<endl; #else //*************************************************************************************************** // 初始化 //*************************************************************************************************** //char positivePath[256] = "D:\\dataset\\INRIAPerson\\Train\\pos\\"; //char negativePath[256] = "D:\\dataset\\INRIAPerson\\Train\\neg\\"; //char testPath[256] = "D:\\dataset\\INRIAPerson\\Test\\pos\\"; char positivePath[256] = "D:\\dataset\\INRIAPerson\\train_64x128_H96\\pos\\"; char negativePath[256] = "D:\\dataset\\INRIAPerson\\train_64x128_H96\\neg\\"; char testPath[256] = "D:\\dataset\\INRIAPerson\\test_64x128_H96\\pos\\"; char classifierSavePath[256] = "D:\\dataset\\INRIAPerson\\myResult"; int positiveSampleCount = 614; int negativeSampleCount = 1218; //int positiveSampleCount = 100; //int negativeSampleCount = 100; int totalSampleCount = positiveSampleCount + negativeSampleCount; int testSampleCount = 288; CvMat *sampleFeaturesMat = cvCreateMat(totalSampleCount, 94500, CV_32FC1); //参数1764? cvSetZero(sampleFeaturesMat); CvMat *sampleLabelMat = cvCreateMat(totalSampleCount, 1, CV_32FC1);//样本标识 cvSetZero(sampleLabelMat); //CvMat *testFeaturesMat = cvCreateMat(testSampleCount, 94500, CV_32FC1); //参数1764? 正288,负453 CvMat *testFeaturesMat = cvCreateMat(1, 94500, CV_32FC1); //参数1764? 正288,负453 cvSetZero(testFeaturesMat); CvMat *testLabelMat = cvCreateMat(testSampleCount, 1, CV_32FC1);//样本标识 cvSetZero(testLabelMat); //float testLabelMat[288] = {0}; //Mat sampleFeaturesMat(); //*************************************************************************************************** // 正例的特征 //*************************************************************************************************** //positive文件读入 //ifstream fin(positivePath, ios::in); //if (!fin) //{ // cout << "positivePath can not open the file!" << endl; // return -1; //} char positiveImage[256]; string path; string s_positiveImage; for (int i = 0; i < positiveSampleCount; i++) { //图片名修改 memset(positiveImage, ‘\0‘, sizeof(positiveImage)); sprintf(positiveImage, "%d.png", i+1); //要改成.jpg吗 s_positiveImage = positiveImage; path = positivePath + s_positiveImage; Mat image = imread(path); if (image.data == NULL) { cout << "positive image sample load error: " << i << " " << path << endl; system("pause"); continue; } //hog特征提取 //gpu::HOGDescriptor hog(Size(64, 64), Size(16, 16), Size(8, 8), Size(8, 8), 9); //貌似还有一些参数,重载了? //HOGDescriptor hog(Size(64, 64), Size(16, 16), Size(8, 8), Size(8, 8), 9); HOGDescriptor hog; vector<float> v_feature; hog.compute(image, v_feature, cv::Size(8, 8)); //hog.compute(image, v_feature, cv::Size(16, 16)); int featureVecSize = v_feature.size(); //cout << "****************************************haha****************" << endl; //cout << featureVecSize<<endl; //return 0; for (int j = 0; j<featureVecSize; j++) { //sampleFeaturesMat[i][j] = v_feature[j]; CV_MAT_ELEM(*sampleFeaturesMat, float, i, j) = v_feature[j]; //CV_MAT_ELEM什么意思 } sampleLabelMat->data.fl[i] = 1; //.fl[]是什么 cout << "positive" << i + 1 << "is running..." << endl; } //fclose(fin); //*************************************************************************************************** // 负例的特征 //*************************************************************************************************** //negative文件读入 //ifstream fin(negativePath, ios::in); //if (!fin) //{ // cout << "can not open the file!" << endl; // return -1; //} char negativeImage[256] = ""; //初始化吗 string s_negativeImage; for (int i = 0; i < negativeSampleCount; i++) { //图片名修改 //hog特征提取 memset(negativeImage, ‘\0‘, sizeof(negativeImage)); sprintf(negativeImage, "%d.png", i+1); //要改成.jpg吗 s_negativeImage = negativeImage; path = negativePath + s_negativeImage; //cout << "********************************************************"<<endl; //cout << path<<endl; Mat image = imread(path); if (image.data == NULL) { cout << "positive image sample load error: " << i << " " << path << endl; system("pause"); continue; } //hog特征提取 //gpu::HOGDescriptor hog(Size(64, 64), Size(16, 16), Size(8, 8), Size(8, 8), 9); //貌似还有一些参数,重载了? //HOGDescriptor hog(Size(64, 64), Size(16, 16), Size(8, 8), Size(8, 8), 9); HOGDescriptor hog; vector<float> v_feature; hog.compute(image, v_feature, cv::Size(8, 8)); int featureVecSize = v_feature.size(); //cout << "***************************lalala*****************************" << endl; //cout << featureVecSize; for (int j = 0; j<featureVecSize; j++) { CV_MAT_ELEM(*sampleFeaturesMat, float, positiveSampleCount +i, j) = v_feature[j]; //CV_MAT_ELEM什么意思 } sampleLabelMat->data.fl[positiveSampleCount +i] = 0; //.fl[]是什么 cout << "negative" << i + 1 << "is running..." << endl; } //********************************************************************************************** // Linear SVM训练 //********************************************************************************************** //设置参数 CvSVMParams params; params.svm_type = SVM::C_SVC; params.C = 0.01; params.kernel_type = SVM::LINEAR; //params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6); params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, FLT_EPSILON); //训练 cout << "Starting training process" << endl; CvSVM svm; svm.train(sampleFeaturesMat, sampleLabelMat, Mat(), Mat(), params); cout << "Finished training process" << endl; //********************************************************************************************** // 结果保存 //********************************************************************************************** //classifierSavePath文件读入 //ifstream fin(classifierSavePath, ios::in); //if (!fin) //{ // cout << "positivePath can not open the file!" << endl; // return -1; //} //svm.save(classifierSavePath); //cvReleaseMat(&sampleFeaturesMat); //cvReleaseMat(&sampleLabelMat); //cout << "has saved succeeded! " << endl; //********************************************************************************************** // 测试 //********************************************************************************************** //test文件读入 //ifstream fin(testPath, ios::in); //if (!fin) //{ // cout << "can not open the file!" << endl; // return -1; //} char testImage[256] = ""; //初始化吗 string s_testImage; for (int i = 0; i < testSampleCount; i++) { //图片名修改 //hog特征提取 memset(testImage, ‘\0‘, sizeof(testImage)); sprintf(testImage, "%d.png", i+1); //要改成.jpg吗 s_testImage = testImage; path = testPath + s_testImage; Mat image = imread(path); if (image.data == NULL) { cout << "positive image sample load error: " << i << " " << path << endl; system("pause"); continue; } //hog特征提取 //gpu::HOGDescriptor hog(Size(64, 64), Size(16, 16), Size(8, 8), Size(8, 8), 9); //貌似还有一些参数,重载了? //HOGDescriptor hog(Size(64, 64), Size(16, 16), Size(8, 8), Size(8, 8), 9); HOGDescriptor hog; vector<float> v_feature; hog.compute(image, v_feature, cv::Size(8, 8)); int featureVecSize = v_feature.size(); //cout << "***************************lalala*****************************" << endl; //cout << featureVecSize; for (int j = 0; j<featureVecSize; j++) { //CV_MAT_ELEM(*testFeaturesMat, float, i, j) = v_feature[j]; //CV_MAT_ELEM什么意思 CV_MAT_ELEM(*testFeaturesMat, float, 0, j) = v_feature[j]; //CV_MAT_ELEM什么意思 } float response = svm.predict(testFeaturesMat); testLabelMat->data.fl[i] = response; //.fl[]是什么 //testLabelMat[i] = response; } float right = 0; for (int i = 0; i < testSampleCount; i++) { if (testLabelMat->data.fl[i] == 1) //if (testLabelMat[i] == 1) { right++; } } float radio = right / testSampleCount; cout << "the radio of the train is:" << radio << endl; #endif return 0; }
标签:
原文地址:http://www.cnblogs.com/Wanggcong/p/4779213.html