标签:
dp(v) = min(dp(p)+cost(p,v))+C(v)
设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v),
则cost(p,v) = x(v)*(sum(v)-sum(p)) - (cnt(v)-cnt(p))
假设dp(v)由dp(i)转移比dp(j)转移优(i>j),
那么 dp(i)+cost(i,v) < dp(j)+cost(j,v)
即 dp(i)+x(v)*(sum(v)-sum(i))-(cnt(v)-cnt(i)) < dp(j)+x(v)*(sum(v)-sum(j))-(cnt(v)-cnt(j))
设f(x) = dp(x)+cnt(x), 化简得 (f(i)-f(j)) / (sum(i)-sum(j)) < x(v)
然后就斜率优化, 单调队列维护一个下凸函数
-----------------------------------------------------------------------
-----------------------------------------------------------------------
L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:? 工厂i距离工厂1的距离Xi(其中X1=0); ? 工厂i目前已有成品数量Pi; ? 在工厂i建立仓库的费用Ci; 请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
仅包含一个整数,为可以找到最优方案的费用。
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
【数据规模】
对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )
标签:
原文地址:http://www.cnblogs.com/JSZX11556/p/4781025.html