码迷,mamicode.com
首页 > 其他好文 > 详细

hihocoder-第六十一周 Combination Lock

时间:2015-09-04 21:12:55      阅读:299      评论:0      收藏:0      [点我收藏+]

标签:

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

技术分享技术分享

Finally, you come to the interview room. You know that a Microsoft interviewer is in the room though the door is locked. There is a combination lock on the door. There are N rotators on the lock, each consists of 26 alphabetic characters, namely, ‘A‘-‘Z‘. You need to unlock the door to meet the interviewer inside. There is a note besides the lock, which shows the steps to unlock it.

Note: There are M steps totally; each step is one of the four kinds of operations shown below:

Type1: CMD 1 i j X: (i and j are integers, 1 <= i <= j <= N; X is a character, within ‘A‘-‘Z‘)

This is a sequence operation: turn the ith to the jth rotators to character X (the left most rotator is defined as the 1st rotator)

For example: ABCDEFG => CMD 1 2 3 Z => AZZDEFG

Type2: CMD 2 i j K: (i, j, and K are all integers, 1 <= i <= j <= N)

This is a sequence operation: turn the ith to the jth rotators up K times ( if character A is turned up once, it is B; if Z is turned up once, it is A now. )

For example: ABCDEFG => CMD 2 2 3 1 => ACDDEFG

Type3: CMD 3 K: (K is an integer, 1 <= K <= N)

This is a concatenation operation: move the K leftmost rotators to the rightmost end.

For example: ABCDEFG => CMD 3 3 => DEFGABC

Type4: CMD 4 i j(i, j are integers, 1 <= i <= j <= N):

This is a recursive operation, which means:

If i > j:
	Do Nothing
Else:
	CMD 4 i+1 j
	CMD 2 i j 1

For example: ABCDEFG => CMD 4 2 3 => ACEDEFG

输入

1st line:  2 integers, N, M ( 1 <= N <= 50000, 1 <= M <= 50000 )

2nd line: a string of N characters, standing for the original status of the lock.

3rd ~ (3+M-1)th lines: each line contains a string, representing one step.

输出

One line of N characters, showing the final status of the lock.

提示

Come on! You need to do these operations as fast as possible.

 

样例输入
7 4
ABCDEFG
CMD 1 2 5 C
CMD 2 3 7 4
CMD 3 3
CMD 4 1 7
样例输出
HIMOFIN

题目分析:

题意分析

给定一个字符串s,以及对该字符串s的 m 个操作。

字符串s包含n个字符,下标为1..n。字符由‘A‘到‘Z‘构成,字符增加1表示该字符变为后续字符,比如‘A‘增加1是‘B‘‘C‘增加1是‘D‘。需要注意的是‘Z‘增加1是‘A‘

m个操作包含以下四种类型:

  1. 将字符串第i位到第j位设定为C

    比如当i=2,j=3,C=‘Z‘时:"ABCDEFG"变成"AZZDEFG"

  2. 将字符串第i位到第j位增加K

    比如i=2,j=3,K=1时:"ABCDEFG"变成"ACDDEFG"

  3. 将字符串左边K位移至右边。

    比如K=3时:"ABCDEFG"变成"DEFGABC"

  4. 从字符串第i位到第j位,依次增加1,2,...,j-i+1。

    比如当i=2,j=3时:"ABCDEFG"变成"ACEDEFG"

输出m个操作结束后的字符串s

算法分析

本题需要根据每一次的操作去修改现在的s。若采用朴素的做法,每一次修改其最大代价为O(n),故总的时间复杂度为O(nm)。对于n=50000,m=50000的数据量来说,这样时间复杂度显然是不能够接受的。

仔细观察我们每一次的操作,其中CMD3是对整体进行了平移,CMD1,CMD2,CMD4都是针对i到j的一个区间进行操作。

 

首先我们来解决看似比较简单的CMD3操作:

若将整个字符串s看作环形,则线型的字符串是从起点指针SP开始顺时针将n个元素进行展开得到的。那么CMD3操作为顺时针移动该环的头指针。举个例子来说:

技术分享

最开始头指针在1时,我们展开字符串为[1,2,3,4,5]。当执行CMD3 K=2操作后,起点指针SP移动到3的位置,此时展开的字符串为[3,4,5,1,2]。

符合CMD3操作的规则,并且起点指针SP的改变就是增加了K。

其中新字符串的第i~j位,对应的是原字符串第i+SP~j+SP位。

所以我们只需要维护一个SP指针,当执行CMD3操作时,改变SP的值。而对于其他操作的区间,只需要将区间从[i..j]变化到[i+SP..j+SP]即可。

需要注意的是,SP,i+SP,j+SP有可能会超过n。当超过n时,需要将其值减去n。

至此执行CMD3操作的时间复杂度降至O(1)。

 

接下来考虑CMD1,CMD2,CMD4。这三个操作均为区间上的操作,因此我们可以使用线段树来进行模拟。(在我们的Hiho一下第19期第20期可以找到线段树的教程)

在那之前,我们需要对字符进行处理。从题目中我们知道当一个字符超过‘Z‘时,会直接变成‘A‘。所以我们可以直接考虑将‘A‘~‘Z‘与0~25对应起来。当一个字符增加了很多次K后,其实际表示的字符也就等于该值 mod 26。

构造线段树

构造线段树,主要是构造每个节点的数据域,使其能够记录我们需要的信息,同时在父节点和子节点之间能够进行信息的传递。根据本题的题意,我们构造的线段树其节点包含以下三个数据:

  • same: 表示当前区间的字符是否相同,若相同则same等于该字符,否则same=-1
  • add: 表示当前区间的增量,对应CMD2操作所增加的K
  • delta和 inc : 这两个变量是一组,其表示CMD4的操作。其含义为,该区间最左起第1个元素值增量为delta,此后每一个元素的增量比前一个多inc。即第2个元素的增量为delta+inc,第3个元素的增量为delta+inc+inc,...,第i个元素的增量为delta+inc*(i-1)。举个例子:

    若我们对区间[1,3]进行了CMD4操作,实际的意义为s1+1,s[2]+2,s[3]+3。对于表示区间[1,3]的节点,其Delta=1,inc=1。

    若我们对区间[1,3]进行了2次CMD4操作,实际意义为s1+2,s[2]+4,s[3]+6。则此时Delta=2,inc=2。而对于表示区间[2,3]的节点,其Delta=4,inc=2。因为该区间左起第1个元素为s[2]+4,故delta=4。

在本题中我们一开始便读入了字符串,该字符串的每一个字符对应了树的一个叶子节点。故我们一开始就需要建出整颗树,其代码:

// 该段代码我们采用的是数组模拟线段树
const int MAXN = 50001;

struct sTreeNode {
    int left, right;
    int same, add;
    int delta, inc;
    int lch, rch;
} tree[ MAXN << 2 ];

void createTree(int rt, int left, int right) {
    tree[rt].left = left, tree[rt].right = right;
    tree[rt].delta = tree[rt].step = 0;
    tree[rt].add = 0;

    if (left == right) {    // 叶子节点
        tree[rt].base = str[ left ] - A;
        tree[rt].lch = tree[rt].rch = 0;
        return ;
    }

    // 非叶子节点
    tree[rt].base = -1;
    tree[rt].lch = rt * 2, tree[rt].rch = rt * 2 + 1;

    int mid = (tree[rt].left + tree[rt].right) >> 1;
    createTree(tree[rt].lch, left, mid);
    createTree(tree[rt].rch, mid + 1, right);
    return ;
}

 

更新线段树

在更新线段树时,需要注意更新区间可能会出现i+SP <= n并且j+SP大于n时,此时要将区间分为[i+SP..n]和[1..j+SP-n]两个部分单独处理。

更新线段树信息的update函数:

// rt表示当前节点
// left,right表示此次操作的区间
// key表示此次操作K或Delta
// type表示此次操作的类型
void update(int rt, int left, int right, int key, int type) {
    if (!rt) return ;
    if (tree[rt].right < left || tree[rt].left > right) return ;
    if (left <= tree[rt].left && tree[rt].right <= right) {
        // 当前节点区间完全包含于[left,right]
        // 更新当前区间信息
        ...
    }  else {
        // 当前节点区间不完全包含于[left,right],则需要让子区间来处理
        // 传递当前区间的信息
        ...            

        // 更新当前区间信息
        ...

        // 迭代处理
        update(tree[rt].lch, left, right, key, type);
        update(tree[rt].rch, left, right, key, type);
    }
    return ;
}

 

若当前区间包含于[left,right],根据操作的不同我们进行如下的处理:

  • CMD1: 直接更新区间的same值,同时将add,delta和inc置为0
    
    if (type == 1) {
        tree[rt].same = key;
        tree[rt].delta = 0, tree[rt].inc = 0;
        tree[rt].add = 0;
    }

     

  • CMD2: 累加到当前区间的add上
    
    if (type == 2) {
        tree[rt].add += key;
    }

     

  • CMD4: 将新的delta和inc累加到当前区间的delta和inc上
    
    if (type == 4) {
        tree[rt].delta += key + (tree[rt].left - left);
        tree[rt].inc ++;
    }

     

当需要对子区间进行处理时,我们需要将当前区间的信息传递下去,此时需要判断当前区间的same值:

// 传递当前区间的信息
int mid = (tree[rt].left + tree[rt].right) / 2;

if (tree[rt].base == -1) {
// lch
    tree[ tree[rt].lch ].delta += tree[rt].delta;
    tree[ tree[rt].lch ].step  += tree[rt].step;
    tree[ tree[rt].lch ].add   += tree[rt].add;
    // rch
    tree[ tree[rt].rch ].delta += tree[rt].delta + (mid - tree[rt].left + 1) * tree[rt].step;
    tree[ tree[rt].rch ].step  += tree[rt].step;
    tree[ tree[rt].rch ].add   += tree[rt].add;
}   else {
    tree[ tree[rt].lch ].base = tree[ tree[rt].rch ].base = tree[rt].base;
    tree[ tree[rt].lch ].delta = tree[rt].delta;
    tree[ tree[rt].rch ].delta = tree[rt].delta + (mid - tree[rt].left + 1) * tree[rt].step;
    tree[ tree[rt].lch ].step = tree[ tree[rt].rch ].step = tree[rt].step;
    tree[ tree[rt].lch ].add  = tree[ tree[rt].rch ].add  = tree[rt].add;
}

 

当我们把当前区间的信息传递下去后,可以知道当前区间内的字符一定会发生改变,所以设置其same=1。同时由于当前区间的add,delta和inc信息已经传递下去,其本身的add,delta和inc设置为0:

// 更新当前区间信息
tree[rt].base = -1;
tree[rt].delta = tree[rt].step = 0;
tree[rt].add = 0;

 

产生新的字符串

在这一步我们需要对整个线段树进行一次遍历,将所有的信息传递到叶子节点,再根据叶子节点的值产生我们新的字符串。

int f[ MAXN ];    // 记录每个叶子节点的数值
void getResult(int rt) {
    if (!rt) return ;
    if (tree[rt].base != -1) {
        int delta = tree[rt].delta;
        for (int i = tree[rt].left; i <= tree[rt].right; ++i)
            f[i] = tree[rt].base + tree[rt].add + delta, delta += tree[rt].step;
    } else {
        int mid = (tree[rt].left + tree[rt].right) / 2;
        // lch
        tree[ tree[rt].lch ].delta += tree[rt].delta;
        tree[ tree[rt].lch ].step  += tree[rt].step;
        tree[ tree[rt].lch ].add   += tree[rt].add;
        // rch
        tree[ tree[rt].rch ].delta += tree[rt].delta + (mid - tree[rt].left + 1) * tree[rt].step;
        tree[ tree[rt].rch ].step  += tree[rt].step;
        tree[ tree[rt].rch ].add   += tree[rt].add;

        getResult(tree[rt].lch);
        getResult(tree[rt].rch);
    }
    return ;
}

 

此时得到的s并不是我们最后的结果,还需要根据SP的值来输出

void typeAns() {
    for (int i = 0; i < n; ++i)
        printf("%c", (char) (f[(SP + i) % n] + A));
    printf("\n");
    return ;
}
技术分享
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#include <cmath>
#include <queue>
#include <map>
#define maxn 50000 + 100
using namespace std;
string ch;
char alpha[30] = {
    A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
};
void dfs(int u, int v, int tt)
{
    int res = 1;
    for(int i = u - 1; i <= v - 1; i++)
    {
        int tt = (ch[i] - A + res) % 26;
        ch[i] = alpha[tt];
        res++;
    }
    return;
}
int main()
{
    int n, m;
    scanf("%d %d", &n, &m);
    cin >> ch;
    int op;
    int u, v, w;
    char c[10];
    char cc[10];
    while(m--)
    {
        cin >> cc >> op;
        if(op == 1)
        {
            scanf("%d %d %s", &u, &v, c);
            for(int i = u - 1; i <= v - 1; i++)
            {
                ch[i] = c[0];
            }
            //cout << ch << endl;
        }
        else if(op == 2)
        {
            scanf("%d %d %d", &u, &v, &w);
            w = w % 26;
            for(int i = u - 1; i <= v - 1; i++)
            {
                int tt = (ch[i] - A + w) % 26;
                ch[i] = alpha[tt];
            }
            // cout << ch << endl;
        }
        else if(op == 3)
        {
            scanf("%d", &w);
            string ch1 = ch;
            string s1 = ch.substr(0, w);
            string s2 = ch1.substr(w, n - w + 1);
            ch = "";
            ch = s2 + s1;
            //cout << ch << endl;
        }
        else if(op == 4)
        {
            scanf("%d %d", &u, &v);
            //printf("%d %d %d\n", u, v, w);
            dfs(u, v, w);
            // cout << ch << endl;
        }
    }
    cout << ch << endl;
    return 0;
}
TLE暴力了一次

根据题意线段树:

技术分享
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string.h>
#include <stdio.h>
#include <queue>
using namespace std;
#define maxn 50000 + 100
int len;
char alpha[30] = {
    A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
};
int sp = 0;
using namespace std;
char ch[maxn];
struct Tire
{
    int same; ///表示当前区间的字符是否相同,若相同则same等于该字符,否则same=-1
    int add;   ///表示当前区间的增量,对应CMD2操作所增加的K
    int delta; ///该区间最左起第1个元素值增量为delta
    int inc;    ///每一个元素的增量比前一个多
    int val;    ///当前的值
} tree[maxn << 2];
void build(int left, int right, int root)
{
    tree[root].same = -1;
    tree[root].add = 0;
    tree[root].delta = 0;
    tree[root].inc = 0;
    tree[root].val = 0;
    if(left == right)
    {
        return;
    }
    int mid = (left + right) >> 1;
    build(left, mid, root << 1);
    build(mid + 1, right, root << 1 | 1);
    return;
}
void change(int& x, int y) {
    x += y;
    x %= 26;
}

void getid(int s, int e, int& s1, int& e1, int& s2, int& e2) {
    s--;
    e--;
    s1 = s2 = e1 = e2 = -2;
    int t1 = sp + s, t2 = sp + e;
    if(t1 < len && t2 < len) {
        s1 = t1;
        e1 = t2;
        s2 = e2 = -2;
    }
    else if(t1 < len && t2 >= len) {
        t2 %= len;
        s1 = t1;
        e1 = len - 1;
        s2 = 0;
        e2 = t2;
    }
    else if(t1 >= len && t2 >= len) {
        t1 %= len;
        t2 %= len;
        s1 = t1;
        e1 = t2;
        s2 = e2 = -2;
    }
    s1++;
    e1++;
    s2++;
    e2++;
}
void pushup(int left, int right, int root)
{
    if(left == right)
    {
        return;
    }
    if(tree[root].same >= 0)
    {
        tree[root << 1].same = tree[root << 1].val = tree[root].same;
        tree[root << 1 | 1].same = tree[root << 1 | 1].val = tree[root].same;
        tree[root].same = -1;
        tree[root << 1].add = tree[root << 1].delta = tree[root << 1].inc = 0;
        tree[root << 1 | 1].add = tree[root << 1 | 1].delta = tree[root << 1 | 1].inc = 0;
    }
    if(tree[root].add >= 0)
    {
        change(tree[root << 1].add, tree[root].add);
        change(tree[root << 1 | 1].add, tree[root].add);
        tree[root].add = 0;
    }
    if(tree[root].delta >= 0)
    {
        change(tree[root << 1].delta, tree[root].delta);
        change(tree[root << 1].inc, tree[root].inc);
        change(tree[root << 1 | 1].delta, tree[root].delta + ((right - left) / 2 + 1)*tree[root]. inc);
        change(tree[root << 1 | 1].inc, tree[root].inc);
        tree[root].delta = 0;
        tree[root].inc = 0;
    }
    return;
}

void update(int op, int L, int R, int root, int left, int right, int val)
{
    pushup(left, right, root);
    if(L <= left && right <= R)
    {
        if(op == 2)
        {
            change(tree[root].add, val);
        }
        else if(op == 4)
        {
            change(tree[root].inc, 1);
            change(tree[root].delta,  left - L  + val);
        }
        else if(op == 1)
        {
            tree[root].same = val;
            tree[root].val = val;
            tree[root].add = 0;
            tree[root].delta = 0;
            tree[root].inc = 0;
        }
        return;
    }
    int mid = (left + right) / 2;
    if(mid >= L) {
        update(op, L, R, root << 1, left, mid, val);
    }
    if(R > mid) {
        update(op, L, R, root << 1 | 1, mid + 1, right, val);
    }
    return;
}
int  query(int L, int R, int root, int left, int right)
{
    pushup(left, right, root);
    if(L <= left && R >= right)
    {
        return (tree[root].val + tree[root].add + tree[root].delta) % 26;
    }
    int mid = (left + right) >> 1;
    if(L <= mid) {
        return  query(L, R, root << 1, left, mid);
    }
    if(R > mid) {
        return  query(L, R, root << 1 | 1, mid + 1, right);
    }
    return 0;
}
int main()
{
    int n, m;
    scanf("%d %d", &n, &m);
    cin >> ch;
    build(1, n, 1);
    for(int i = 0; i < n; i++)
    {
        update(1, i + 1, i + 1, 1, 1, n, ch[i] - A);
    }
    sp = 0;
    int op;
    int u, v, w;
    char c[10];
    char cc[10];
    int s1, e1, s2, e2;
    len = n;
    for(int jj = 0; jj < m; jj++)
    {
        cin >> cc >> op;
        if(op == 1)
        {
            cin >> u >> v >> c;
            getid(u, v, s1, e1, s2, e2);
            update(1, s1, e1, 1, 1, n, c[0] - A);
            if(s2 != -1 && e2 != -1) {
                update(1, s2, e2, 1, 1, n, c[0] - A);
            }
        }
        else if(op == 2)
        {
            cin >> u >> v >> w;
            getid(u, v, s1, e1, s2, e2);
            update(2, s1, e1, 1, 1, n, w);
            if(s2 != -1 && e2 != -1) {
                update(2, s2, e2, 1, 1, n, w);
            }
        }
        else if(op == 3)
        {
            scanf("%d", &w);
            sp = sp + w;
            sp = sp % n;
        }
        else if(op == 4)
        {
            cin >> u >> v;
            getid(u, v, s1, e1, s2, e2);
            update(4, s1, e1, 1, 1, n, 1);
            if(s2 != -1 && e2 != -1)
            {
                update(4, s2, e2, 1, 1, n, e1 - s1 + 2);
            }
        }
    }
    int  tt = sp;
    for(int i = 0; i < n; i++)
    {
        printf("%c", A + query(tt + 1, tt + 1, 1, 1, n));
        tt++;
        tt %= n;
    }
    return 0;
}
View Code

 

hihocoder-第六十一周 Combination Lock

标签:

原文地址:http://www.cnblogs.com/chenyang920/p/4782289.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!