码迷,mamicode.com
首页 > 其他好文 > 详细

高斯消元学习

时间:2015-09-05 14:56:33      阅读:176      评论:0      收藏:0      [点我收藏+]

标签:

1. 证明XOR满足交换律,结合律,是自身的逆运算。
  比如说,1^0 = 1   1^1 = 0  0^1 = 1 0^0 = 0
      1^1^0 = 0 = 1^0^1 = 0.
      a^b^a=b 即一个数异或两次相当于无效

 

2. 从N个数中选出两个数,使XOR和最大。
解法:
  我们知道两个数字之间的异或运算都是按位异或,也就是说把他们各自化成为二进制的形式,然后,每次查找与这个数字差别最大的数。
比如现在有,0111,0000,0101,1010. 我们查找最大的异或结果。
可以建立一个trie树。
 
 
技术分享
 
二进制的比较,要从高位到低位,要使异或和最大,那么我们就枚举第i个数字,查找与第i个数字相差最大的数字是多少,高位优先。
比如说,查找与0 1 1 1 相互异或后得到的最大值的数字是多少,我们的思路肯定是从root开始,依次从高位开始寻找与0 1 1 1 相异或的数字,如果遇到相同的位置,那么就妥协处理。
 
3. lN个点的边带权的树,找一条路径使XOR和最大。
解法:
  任选一个根,h_i表示的是从根节点到节点i的路径的XOR和
  X到Y的路径XOR和表示为h_x XOR h_y
 
4. 从N个数中选出若干个,使XOR和为K,给出方案或指出不可行。
解法:
  X_i 为0,表示的是第i个数不选,X_i为1,表示的是第i个数选。
现在考虑K的第p位的情况:
  如果K的第p位是1,则第p个二进制位为1的数字有奇数个被选择
  如果K的第p位是0,则第p个二进制位为1的数字有偶数个被选择
  得到方程X_i1+X_i2+X_i3+...+X_is = Kp ( + 都是XOR )
联立60个方程,方程的解,等价于原问题的解。
 

高斯消元学习

标签:

原文地址:http://www.cnblogs.com/wikioibai/p/4783149.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!