码迷,mamicode.com
首页 > 其他好文 > 详细

提升方法要点

时间:2015-09-07 22:49:51      阅读:326      评论:0      收藏:0      [点我收藏+]

标签:

1.提升方法是将弱学习算法提升为强学习算法的统计学习方法,在分类学习中,提升方法通过反复修改训练数据的权值分布,构建一系列基本分类器,并将这些基本的分类器线性组合,构成一个强分类器,代表性的提升方法是AdaBoost算法。

2.AdaBoost算法的特点是通过迭代每次学习一个基本分类器,每次迭代中提高那些被前一轮分类器错误分类数据的权值,而降低那些被正确分类的数据的权值。最后,AdaBoost将基本分类器的线性组合作为强分类器,其中给分类误差率小的基本分类器以大的权值,给分类误差率大的基本分类器以小的权值。

3.AdaBoost的训练误差分析表明,AdaBoost每次迭代迭代可以减少它在训练数据集上的分类误差率,这说明了它作为提升方法的有效性。

4.AdaBoost算法的一个解释是该算法实际是前向分步算法的一个实现,在这个算法里,模型是加法模型,损失函数是指数函数,算法是前向分步算法。

5.提升树是以分类树和回归树为基本分类器的提升方法。提升树被认为是统计学习中最有效的方法之一。

提升方法要点

标签:

原文地址:http://www.cnblogs.com/angel1314/p/4790093.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!