码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 3308 线段树单点更新+区间查找最长连续子序列

时间:2015-09-08 01:45:49      阅读:234      评论:0      收藏:0      [点我收藏+]

标签:

                                                      LCIS

                                                             Time Limit: 6000/2000 MS (Java/Others)    

                                                            Memory Limit: 65536/32768 K (Java/Others)
                                                            Total Submission(s): 5591    Accepted Submission(s): 2443


Problem Description
Given n integers.
You have two operations:
U A B: replace the Ath number by B. (index counting from 0)
Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
 

 

Input
T in the first line, indicating the case number.
Each case starts with two integers n , m(0<n,m<=105).
The next line has n integers(0<=val<=105).
The next m lines each has an operation:
U A B(0<=A,n , 0<=B=105)
OR
Q A B(0<=A<=B< n).
 

 

Output
For each Q, output the answer.
 

 

Sample Input
1 10 10 7 7 3 3 5 9 9 8 1 8 Q 6 6 U 3 4 Q 0 1 Q 0 5 Q 4 7 Q 3 5 Q 0 2 Q 4 6 U 6 10 Q 0 9
 

 

Sample Output
1 1 4 2 3 1 2 5
 

 

Author
shǎ崽
 
题解:开始看错题,以为是最长子序列,GG,
  后知后觉,线段树秒了
技术分享
///1085422276
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#include<bitset>
#include<set>
#include<vector>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,127,sizeof(a))
#define memfy(a)  memset(a,-1,sizeof(a))
#define TS printf("111111\n");
#define FOR(i,a,b) for( int i=a;i<=b;i++)
#define FORJ(i,a,b) for(int i=a;i>=b;i--)
#define READ(a,b) scanf("%d%d",&a,&b)
#define mod 1000000007
#define inf 1000000001
#define maxn 200000+2
inline ll read()
{
    ll x=0,f=1;
    char ch=getchar();
    while(ch<0||ch>9)
    {
        if(ch==-)f=-1;
        ch=getchar();
    }
    while(ch>=0&&ch<=9)
    {
        x=x*10+ch-0;
        ch=getchar();
    }
    return x*f;
}
//****************************************
struct ss
{
    int l,r,v,ans;
    int lc,rc;
}tr[maxn<<2];
int a[maxn<<2],n,q;
void push_up(int k)
{
    if(a[tr[k<<1].r]<a[tr[k<<1|1].l])
    {
        tr[k].ans=max(max(tr[k<<1].ans,tr[k<<1|1].ans),tr[k<<1].rc+tr[k<<1|1].lc);
        if(tr[k<<1].lc==(tr[k<<1].r-tr[k<<1].l+1))
        {
            tr[k].lc=tr[k<<1].lc+tr[k<<1|1].lc;
        }else  tr[k].lc=tr[k<<1].lc;
        if(tr[k<<1|1].lc==(tr[k<<1|1].r-tr[k<<1|1].l+1))
        {
             tr[k].rc=tr[k<<1|1].rc+tr[k<<1].rc;
        }else  tr[k].rc=tr[k<<1|1].rc;
    }
    else
    {
        tr[k].ans=max(tr[k<<1].ans,tr[k<<1|1].ans);
        tr[k].lc=tr[k<<1].lc;
        tr[k].rc=tr[k<<1|1].rc;
    }
}
void build(int k,int s,int t)
{
    tr[k].l=s;
    tr[k].r=t;
    if(s==t)
    {
        tr[k].v=a[s];
        tr[k].ans=1;
        tr[k].lc=1;
        tr[k].rc=1;
        return ;
    }
    int mid=(s+t)>>1;
    build(k<<1,s,mid);
    build(k<<1|1,mid+1,t);
    push_up(k);
}
void update(int k,int x,int c)
{
    if(tr[k].l==x&&tr[k].r==x)
    {
        tr[k].v=c;
        a[x]=c;
        return ;
    }
    int mid=(tr[k].l+tr[k].r)>>1;
    if(x<=mid)update(k<<1,x,c);
    else update(k<<1|1,x,c);
    push_up(k);
}
int ask(int k,int s,int t)
{
    if(tr[k].l==s&&tr[k].r==t)
    {
        return tr[k].ans;
    }
    int mid=(tr[k].l+tr[k].r)>>1;
    if(t<=mid)return ask(k<<1,s,t);
    else if(s>mid)return ask(k<<1|1,s,t);
    else {
      int ret=0;
      int A=ask(k<<1,s,mid);
      int B=ask(k<<1|1,mid+1,t);
      ret=max(A,B);
      A=min(tr[k<<1].rc,mid-s+1);
      B=min(tr[k<<1|1].lc,t-mid);
         if(a[tr[k<<1].r]<a[tr[k<<1|1].l])
                ret=max(A+B,ret);
      return ret;
    }
}
int main()
{

    int T=read();
    while(T--)
    {
        n=read();
        q=read();
        FOR(i,1,n)
        {
            a[i]=read();
        }
        build(1,1,n);
        int a,b;
        char ch[321];
        FOR(i,1,q)
        {
            scanf("%s%d%d",ch,&a,&b);
            if(ch[0]==Q)
            {
                printf("%d\n",ask(1,a+1,b+1));
            }
            else update(1,a+1,b);
        }
    }
    return 0;
}
代码

 

HDU 3308 线段树单点更新+区间查找最长连续子序列

标签:

原文地址:http://www.cnblogs.com/zxhl/p/4790424.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!