码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 3013 Big Christmas Tree(最短Dijkstra+优先级队列优化,SPFA)

时间:2015-09-08 21:46:59      阅读:200      评论:0      收藏:0      [点我收藏+]

标签:

POJ 3013 Big Christmas Tree(最短路Dijkstra+优先队列优化,SPFA)

ACM

题目地址:POJ 3013

题意: 
圣诞树是由n个节点和e个边构成的,点编号1-n。树根为编号1,选择一些边。使得全部节点构成一棵树。选择边的代价是(子孙的点的重量)×(这条边的价值)。

求代价最小多少。

分析: 
单看每一个点被计算过的代价,非常明显就是从根到节点的边的价值。所以这是个简单的单源最短路问题。

只是坑点还是非常多的。

 
点的数量高达5w个,用矩阵存不行。仅仅能用边存。 
还有路径和结果会超int。所以要提高INF的上限。(1<<16)*50000就可以。

能够用Dijkstra+优先队列做,也能够用SPFA做,貌似SPFA会更快。我这里用的是Dijkstra,要1s多...回头要用SPFA做一遍。

用SPFA做了一遍发现也是1s多,看了是STL用多了 = =。 
嘛。留个模板。

代码: 
(Dijkstra+priority_queue)

/*
*  Author:      illuz <iilluzen[at]gmail.com>
*  File:        3013.cpp
*  Create Date: 2014-07-27 09:54:35
*  Descripton:  dijkstra 
*/

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#include <vector>
#include <queue>
#define repf(i,a,b) for(int i=(a);i<=(b);i++)

const int N = 50100;
const long long INF = (long long)(1<<16)*N;

struct Edge {
	int from, to;
	int dist;
};

struct HeapNode {
	int d;
	int u;
	bool operator < (const HeapNode rhs) const {
		return d > rhs.d;
	}
};

struct Dijkstra {
	int n, m;			// number of nodes and edges
	vector<Edge> edges;
	vector<int> G[N];	// graph
	bool vis[N];	// visited?

long long d[N]; // dis int p[N]; // prevent edge void init(int _n) { n = _n; } void relief() { for (int i = 0; i < n; i++) { G[i].clear(); } edges.clear(); } void AddEdge(int from, int to, int dist) { // if non-directed, add twice edges.push_back((Edge){from, to, dist}); m = edges.size(); G[from].push_back(m - 1); } void dijkstra(int s) { priority_queue<HeapNode> Q; for (int i = 0; i < n; i++) { d[i] = INF; vis[i] = 0; } d[s] = 0; Q.push((HeapNode){0, s}); while (!Q.empty()) { HeapNode x = Q.top(); Q.pop(); int u = x.u; if (vis[u]) { continue; } vis[u] = true; for (int i = 0; i < G[u].size(); i++) { // update the u's linking nodes Edge& e = edges[G[u][i]]; //ref for convenient if (d[e.to] > d[u] + e.dist) { d[e.to] = d[u] + e.dist; p[e.to] = G[u][i]; Q.push((HeapNode){d[e.to], e.to}); } } } } }; int t; int e, v, x, y, d, w[N]; int main() { scanf("%d", &t); Dijkstra di; while (t--) { scanf("%d%d", &v, &e); di.init(v); repf (i, 0, v - 1) { scanf("%d" ,&w[i]); } repf (i, 0, e - 1) { scanf("%d%d%d", &x, &y, &d); di.AddEdge(x - 1, y - 1, d); di.AddEdge(y - 1, x - 1, d); } di.dijkstra(0); long long ans = 0; bool ring = false; repf (i, 0, v - 1) { if (di.d[i] == INF) { ring = true; } ans += w[i] * di.d[i]; } if (ring) { cout << "No Answer" << endl; } else { cout << ans << endl; } if (t) // if not the last case di.relief(); } return 0; }



(SPFA)

/*
*  Author:      illuz <iilluzen[at]gmail.com>
*  File:        3013_spfa.cpp
*  Create Date: 2014-07-27 15:44:45
*  Descripton:  spfa 
*/

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#include <vector>
#include <queue>
#define repf(i,a,b) for(int i=(a);i<=(b);i++)

const int N = 50100;
const long long INF = (long long)(1<<16)*N;

struct Edge {
	int from, to;
	int spst;
};

struct SPFA {
	int n, m;
	vector<Edge> edges;
	vector<int> G[N];	// the edges which from i
	bool vis[N];
	long long d[N];	// sps
	int p[N];		// prevent

	void init(int _n) {
		n = _n;
	}

	void relief() {
		for (int i = 0; i < n; i++)
			G[i].clear();
		edges.clear();
	}

	void AddEdge(int from, int to, int spst) {
		// if non-sprected, add twice
		edges.push_back((Edge){from, to, spst});
		m = edges.size();
		G[from].push_back(m - 1);
	}

	void spfa(int s) {
		queue<int> Q;
		while (!Q.empty())
			Q.pop();
		for (int i = 0; i < n; i++) {
			d[i] = INF;
			vis[i] = 0;
		}
		d[s] = 0;
		vis[s] = 1;
		Q.push(s);
		while (!Q.empty()) {
			int u = Q.front();
			Q.pop();
			vis[u] = 0;
			for (int i = 0; i < G[u].size(); i++) {
				Edge& e = edges[G[u][i]];
				if (d[e.to] > d[u] + e.spst) {
					d[e.to] = d[u] + e.spst;
					p[e.to] = G[u][i];
					if (!vis[e.to]) {
						vis[e.to] = 1;
						Q.push(e.to);
					}
				}
			}
		}
		
	}
};

int t;
int e, v, x, y, d, w[N];

int main() {
	scanf("%d", &t);
	SPFA sp;

	while (t--) {
		scanf("%d%d", &v, &e);
		sp.init(v);

		repf (i, 0, v - 1) {
			scanf("%d" ,&w[i]);
		}
		repf (i, 0, e - 1) {
			scanf("%d%d%d", &x, &y, &d);
			sp.AddEdge(x - 1, y - 1, d);
			sp.AddEdge(y - 1, x - 1, d);
		}
		sp.spfa(0);

		long long ans = 0;
		bool ring = false;
		repf (i, 0, v - 1) {
			if (sp.d[i] == INF) {
				ring = true;
			}
			ans += w[i] * sp.d[i];
		}
		if (ring) {
			cout << "No Answer" << endl;
		} else {
			cout << ans << endl;
		}

		if (t)	// if not the last case
			sp.relief();
	}
	return 0;
}


版权声明:本文博主原创文章。博客,未经同意不得转载。

POJ 3013 Big Christmas Tree(最短Dijkstra+优先级队列优化,SPFA)

标签:

原文地址:http://www.cnblogs.com/bhlsheji/p/4792765.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!