码迷,mamicode.com
首页 > 其他好文 > 详细

关于HuffmanCoding的简单分析

时间:2014-07-15 13:16:27      阅读:346      评论:0      收藏:0      [点我收藏+]

标签:huffmancoding   数据压缩   

 

 

1.what‘s problem we faced?

/**
*    Q: what‘s problem we faced?
*
*    A: Data compression is still a problem, even now. we want to compress
*        the space of data. This desire is more and more stronger when we
*        need to deal with some operation about data transmission. Before
*        we start this article, it may be helpful if you try to provide a valid way
*        to compress data . I tried, but failed obviously. That why I write this
*        article. ^_^
*/

 

2. How can I solve it?

/**
*    Q: How can I solve it?
*
*    A: Where have problem is where have an answer, although it not always
*        the best one. In 1951, a algorithm was introduced by David A. Huffman.
*        It is different from the normal code and is a variable length code, which
*        have different length of code for different symbol. Now, there are two
*        problems:
*
*        No.1: is  variable length code possible? How can we know the length
*                of current symbol?
*
*                The answer is prefix code. Think about this, a tree like following:
*
*                                        
*                                         O
*                                   1 /     \ 0
*                                    O       O
*                               1 /    \ 0   c
*                                O      O
*                                a       b
*
*                This is a simple binary tree. There are three leaf node: a, b ,and c.we
*                label all of left branch as 1, and all of right branch as 0. So if we want
*                to arrive the leaf node a, the path is 11. In a similar way, we can get
*                all of nodes:
*                        a : 11
*                        b : 10
*                        c : 0
*
*                By accident, we get a variable length code.
*
*
*        No.2: How can we use variable length code to compress a series of symbol?
*
*                Now that we have a ability about variable length code. Some funny thing
*                will happen. Image this, In a data, which consist of a series of symbols,
*                some of symbols have occur at high proportion. some of symbols has occur
*                at low proportion. If we use some shorter code to indicate those symbols
*                which have a high proportion, the space of data will smaller than ever.
*                That is what we want.
*
*        Now, we have been know that we could compress a data by use variable length
*        code. However, the next problem is what kind of variable length code is what we
*        want. what kind of code is optimal ?
*/

 

3. What is HuffmanCoding ?

/**
*    Q: What is HuffmanCoding ?
*
*    A:Now,the problem is how can I create a optimal tree ? Do you have any idea?
*        Huffman was introduced a algorithm. It is looks like greedy algorithm. It is may
*        be simple, but the result is valid( this will be demonstrated below). The simplest
*        construction algorithm use a priority queue where the node with lowest probability
*        is given highest priority, the steps as following:
*
*        1. create a leaf node for each symbol, and add it to the priority queue.
*        2. while there is more than one node in the queue:
*            1. remove two nodes that have the highest priority.
*            2. create a new node as the parent node of the two nodes above. the
*                probability of this one is equal to the sum of the two nodes‘ probabilities.
*            3. add the new node to the queue.
*        3. the remaining node is the root of this tree. Read it‘s code as we do above.
*
*/

 

4. is it optimal ?

/**
*    Q: is it optimal ?
*
*    A: Hard to say. I haven‘t a valid method to measure this. About this issue, it is necessary to hear
*        about other people‘s advice. I believe there must be some exciting advice. By the way, this article
*        is just talk about compress of independent symbol, another important issue is about related symbol.
*        That maybe a serious problem.
*
*/

 

5. source code

/**
*    Here is an simple example
*/

#include <stdio.h>
#include <iostream>


/**
*    In a Huffman tree, some of nodes is valid symbol, and other is a combine node, which
*    haven't a valid symbol. we need to label it in our nodes.
*/
enum ELEM_TYPE {
        ET_VALID,
        ET_INVALID,
        ET_MAX,
};

typedef int    INDEX;

/**
*    this is a container, we push all of element to it, and pop element by a priority. It is
*    a class template since we don't know the type of data element.
*/
template <class ELEM>
class Container {
        public:
                Container( int capacity);
                ~Container( );
                /*
            *    push a element to this container.
            */
                bool push( ELEM item);
                /*
            *    pop a element from this container, the smallest one have the most priority.
            *    Of course, the element must have provide a reload function for operator '<'.
            */
                bool pop( ELEM &item );
		
        private:
                bool _find_idle( INDEX &num);
                bool _set_elem( INDEX num, ELEM &elem);
                bool _get_elem( INDEX num, ELEM &elem);
		
                ELEM                *ele;
                ELEM_TYPE    *stat;
                int                        cap;
};

template <class ELEM>
Container<ELEM>::Container(  int capacity)
{
        this->ele = new ELEM[capacity] ;
        this->stat = new ELEM_TYPE[capacity];

        int        i;
        for( i=0; i<capacity; i++)
                this->stat[i] = ET_INVALID;

        this->cap = capacity ;
}

template <class ELEM>
Container<ELEM>::~Container(  )
{
        if( this->ele!=NULL )
                delete []this->ele;

        if( this->stat!=NULL )
                delete []this->stat;

        this->cap = 0;
}

template <class ELEM>
bool Container<ELEM>::push( ELEM item)
{
        INDEX        num = -1;

        if( (!this->_find_idle( num))
                ||(!this->_set_elem( num, item)))
                return false;

        return true;
}

template <class ELEM>
bool Container<ELEM>::pop( ELEM &item )
{
        INDEX    i = 0;
        INDEX    Min;

        /*
       *    find the first valid element.
       */
        while( (this->stat[i]!=ET_VALID)
                        &&( i<this->cap))
                            i++;

        for( Min = i ; i<this->cap; i++)
        {
                if(  ( this->stat[i]==ET_VALID)
                      &&( this->ele[i]<this->ele[Min]))
                    {
                            Min = i;
                    }
        }

        return this->_get_elem( Min, item);
}


template <class ELEM>
bool Container<ELEM>::_find_idle( INDEX &num)
{
        INDEX        i;
        for( i=0; i<this->cap; i++)
        {
                if( this->stat[i]==ET_INVALID )
                {
                        num = i;
                        return true;
                }
        }

        return false;
}

template <class ELEM>
bool Container<ELEM>::_set_elem( INDEX num, ELEM &elem)
{
        if( (num>=this->cap)
                ||(num<0) )
                    return false;

        this->stat[num] = ET_VALID;
        this->ele[num] = elem;

        return true;
}

template <class ELEM>
bool Container<ELEM>::_get_elem( INDEX num, ELEM &elem)
{
        if( (num<0)
                ||(num>=this->cap))
                    return false;

        this->stat[num] = ET_INVALID;
        elem =  this->ele[num];

        return true;
}

/**
*    define a type of symbol. It will be used to record all information about a symbol.
*/
typedef char SYMINDEX;
typedef int SYMFRE;

class Symbol {
        public:
                /*
            *    In the Huffman tree, we need to compute the sum of two child symbol.
            *    For convenience,build a reload function is necessary.
            */
                Symbol operator + ( Symbol &s);
                SYMINDEX        sym;
                SYMFRE            freq;
};

Symbol Symbol::operator +( Symbol &s)
{
        Symbol        ret;
        ret.sym = '\0';
        ret.freq = this->freq + s.freq;
        return ret;
}

/**
*    define a node of binary tree. It will be used to create a Huffman tree.
*/
class HTreeNode {
        public:
                /*
            *    In the container, we need compare two nodes. So this node must
            *    provide a reload function about '<'.
            */
                bool operator< ( HTreeNode &n);

                HTreeNode        *lchild;
                HTreeNode        *rchild;
                Symbol                sym;
};

bool HTreeNode::operator < ( HTreeNode &n)
{

        return this->sym.freq<n.sym.freq? true: false;
}



/**
*    This is the core structure. It will build a Huffman coding based on our input symbol.
*/
class HuffmanCoding {
        public:
                HuffmanCoding( );
                ~HuffmanCoding( );
                bool Set( Symbol s[], int num);
                bool Work( void);

	private:
                /*
            *    create a Huffman tree.
            */
                bool CreateTree(Symbol s[], int num );
                bool DestroyTree( );
                /*
            *    read Huffman coding from a Huffman tree.
            */
                bool ReadCoding( );
                bool TravelTree( HTreeNode *parent, char *buf, INDEX cur);

                Symbol                *sym ;
                int                        sym_num ;
                HTreeNode        *root ;
};


HuffmanCoding::HuffmanCoding( )
{
        this->sym = NULL;
        this->sym_num = 0;
        this->root = NULL;
}


HuffmanCoding::~HuffmanCoding( )
{
        if( this->sym!=NULL)
                delete []this->sym;

        this->sym_num = 0;
        this->DestroyTree( );
}

/**
*    receive data from outside. Actually, this function is not necessary.But for make the 
*    algorithm looks like more concise,maybe this function is  necessary.
*/
bool HuffmanCoding::Set( Symbol s [ ], int num)
{
        this->DestroyTree( );

        this->sym = new Symbol[num];
        for( int i=0; i<num; i++)
                this->sym[i] = s[i];

        if( NULL!=this->sym)
        {
                this->sym_num = num;
                return true;
        }
        else
        {
                this->sym_num = 0;
                return false;
        }
}
/**
*    The core function. In this function, we create a Huffman tree , then read it.
*/
bool HuffmanCoding::Work( void)
{
	
        //Create a Huffman tree	
        if( !this->CreateTree( this->sym, this->sym_num))
                return false;
        //read Huffman coding
        if( !this->ReadCoding( ))
                return false;

        return true;
}


bool HuffmanCoding::CreateTree( Symbol s[], int num)
{
         /*
       *    create a priority tank. It always pop the element of the highest priority in the tank.
       */
        Container<HTreeNode>	tank(num);
        for( int i=0; i<this->sym_num; i++)
        {
                HTreeNode        node;
                node.lchild = NULL;
                node.rchild = NULL;
                node.sym = s[i];
                tank.push( node);
        }
        /*
       *    always pop two nodes, if fail, that's means there is only one node remain and it
       *    is the root node of this Huffman tree.
       */
        HTreeNode        node1;
        HTreeNode        node2;
        while(  tank.pop( node1)
                        && tank.pop( node2) )
        {
                HTreeNode        parent;
                parent.lchild = new HTreeNode;
                parent.rchild = new HTreeNode;
                *parent.lchild = node1;
                *parent.rchild = node2;
                parent.sym = node1.sym + node2.sym;
                /*
            *    push new node to the tank.
            */
                tank.push( parent);
        }

        this->root = new HTreeNode(node1);

        return true;
}


bool HuffmanCoding::DestroyTree( )
{

        return false;
}

bool HuffmanCoding::ReadCoding( )
{
        char        *code;
        code = new char[this->sym_num + 1];
        /*
       *    travel the Huffman tree and print the code of all valid symbols.
       */
        this->TravelTree( this->root, code, 0);

        delete []code;

        return true;
}


#define        LCHAR    '1'
#define        RCHAR    '0'

bool HuffmanCoding::TravelTree( HTreeNode *parent, char *buf, INDEX cur)
{
        buf[cur] = '\0';
        if( (parent->lchild==NULL)
                &&(parent->rchild==NULL) )
                {//end node
                        printf("[ %c] : %s\n", parent->sym.sym, buf);
	        }

        if( parent->lchild!=NULL )
        {
                buf[cur] = LCHAR;
                this->TravelTree( parent->lchild, buf, cur + 1);
        }

        if( parent->rchild!=NULL )
        {
                buf[cur] = RCHAR;
                this->TravelTree( parent->rchild, buf, cur + 1);
        }

        return true;
}


static Symbol	sArr[ ] = {
        { '0', 0},
        { '1', 1},
        { '2', 2},
        { '3', 3},
        { '4', 4},
        { '5', 5},
        { '6', 6},
        { '7', 7},
        { '8', 8},
        { '9', 9},
};


int main()
{
        HuffmanCoding    hcoding;
        hcoding.Set( sArr, 10);
        hcoding.Work( );

        return 0;
}


 

 

 

 

 

 

关于HuffmanCoding的简单分析,布布扣,bubuko.com

关于HuffmanCoding的简单分析

标签:huffmancoding   数据压缩   

原文地址:http://blog.csdn.net/u012301943/article/details/37769259

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!