码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 5293

时间:2015-09-10 12:37:17      阅读:149      评论:0      收藏:0      [点我收藏+]

标签:

树上DP题。

其实有点类似于01的问题。方程很容易想到。首先,因为一条链的节点其实都是在树上的,所以很容易想到应该先求一个LCA。然后,当某节点不是链的LCA时,它的转移就是:

dp[i]=sum[i],其中,sum[i]是i的子节点的dp[i]的和。

如果它是某个点的LCA时,那么它的转移就是dp[i]=val[p]+(sum(sum[k])-sum(dp[k except i])),k是一条chain上的节点。

 

然而,这样做是不会过的,TLE。。。

树状数组维和chain上的节点的和。QAQ.....

怎么样维护呢?首先,使用DFS把树处理成DFS序,并维护时间戳,这是很显然的,记为l[u],r[u]。然后,假设对于某条链的LCA为u,计算出sum[u]和dp[u]后,对l[u]~r[u]进行区间更新。为什么要区间更新呢?因为,如果以后存在一条chain的起点是在u的子树内,那么,我们在计算链上节点和时,该链必定是经过u点的,这样,求前缀和就可以得到一个和是包含了u点的。区间更新,单点查询。单点查询就是完成了从起或终点到它们的LCA的链上节点求和,因为每次区间更新的时候,因为起点都在子树内,就可以对链上的节点的和不停地累加。

 

我弱菜没想到优化,TLE的代码。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#pragma comment(linker, "/STACK:1024000000,1024000000") 
using namespace std;

const int MAX=100010;

struct Point{
	int v,i;
	Point(int vv,int ii){
		v=vv,i=ii;
	}
};

vector<Point>chain[MAX];
vector<int>head_chain[MAX];
//vector<int>chain_point;
int chain_from[MAX],chain_to[MAX],chain_val[MAX];
int pre[MAX];

struct Edge{
	int u,v,next;
}edge[MAX*2];
int head[MAX],tot,n,m;
int sum[MAX],dp[MAX];
int parent[MAX],depth[MAX];
bool color[MAX];

void addedge(int u,int v){
	edge[tot].u=u;
	edge[tot].v=v;
	edge[tot].next=head[u];
	head[u]=tot++;
}


int get_point(int i){
//	chain_point.clear();
	int res=0;
	int u=chain_from[i],v=chain_to[i];
	if(depth[u]<depth[v]) swap(u,v);
	while(depth[u]>depth[v]){
	//	chain_point.push_back(u);
		res+=(sum[u]-dp[u]);
		u=parent[u];
	}
	while(u!=v){
	//	chain_point.push_back(u);
	//	chain_point.push_back(v);
		res+=(sum[u]-dp[u]);
		res+=(sum[v]-dp[v]);
		u=parent[u];
		v=parent[v];
	}
	res+=sum[u];
//	chain_point.push_back(u);
	return res;
}

void dfs(int u,int par){
	sum[u]=0;
	for(int e=head[u];e!=-1;e=edge[e].next){
		int v=edge[e].v;
		if(v!=par){
			dfs(v,u);
			sum[u]+=dp[v];
		}
	}
	dp[u]=sum[u];
	if(head_chain[u].size()){
		int sz=head_chain[u].size();
		int tmp,index,tsz;
		for(int i=0;i<sz;i++){
			index=head_chain[u][i];
			tmp=get_point(index);
		//	tmp=0; tsz=chain_point.size();
		//	for(int k=0;k<tsz;k++){
		//		tmp+=(sum[chain_point[k]]-dp[chain_point[k]]);
		//	}
			dp[u]=max(dp[u],tmp+chain_val[index]);
		}
	}
}

int findx(int u){
	int x=u;
	while(pre[u]!=-1){
		u=pre[u];
	}
	while(pre[x]!=-1){
		int t=pre[x];
		pre[x]=u;
		x=t;
	}
	return u;
}

void DFS(int u,int par,int dep){
	parent[u]=par;
	depth[u]=dep;
	for(int e=head[u];e!=-1;e=edge[e].next){
		int v=edge[e].v;
		if(v!=par){
			DFS(v,u,dep+1);
			pre[findx(v)]=u;
		}
	}
	color[u]=true;
	int sz=chain[u].size(),v;
	for(int i=0;i<sz;i++){
		v=chain[u][i].v;
		if(color[v]){
			head_chain[findx(v)].push_back(chain[u][i].i);
		}
	}
}

/*
void get_head(int i){
	int u=chain_from[i],v=chain_to[i];
	if(depth[u]<depth[v]) swap(u,v);
	while(depth[u]>depth[v]){
		u=parent[u];
	}
	while(u!=v){
		u=parent[u],v=parent[v];
	}
	head_chain[u].push_back(i);
}
*/
int main(){
	int T,u,v;
	scanf("%d",&T);
	while(T--){
		scanf("%d%d",&n,&m);
		tot=0;
		memset(head,-1,sizeof(head));
		memset(pre,-1,sizeof(pre));
		memset(color,false,sizeof(color));
		for(int i=1;i<n;i++){
			scanf("%d%d",&u,&v);
			addedge(u,v);
			addedge(v,u);
			head_chain[i].clear();
			chain[i].clear();
		}
		chain[n].clear();
		head_chain[n].clear();
		for(int i=1;i<=m;i++){
			scanf("%d%d%d",&chain_from[i],&chain_to[i],&chain_val[i]);
			chain[chain_from[i]].push_back(Point(chain_to[i],i));
			chain[chain_to[i]].push_back(Point(chain_from[i],i));
		//	get_head(i);
		}
		DFS(1,1,1);
		dfs(1,0);
		printf("%d\n",dp[1]);
	}
	return 0;
}

 

 

http://blog.csdn.net/qq_24451605/article/details/47003497

简单的代码,其实写起来真的不难,主要是优化没想到。。。。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define MAX 200007

using namespace std;

int n,m,t;

typedef long long LL;

LL d[MAX];
LL sum[MAX];

LL c1[MAX<<1];
LL c2[MAX<<1];

int lowbit ( int x )
{
    return x&-x;
}

void add1 ( int x , LL v )
{
    while ( x <= n )
    {
        c1[x] += v;
        x += lowbit ( x );
    }
}

void add2 ( int x , LL v )
{
    while ( x <= n )
    {
        c2[x] += v;
        x += lowbit ( x );
    }
}

LL sum1 ( int x )
{
    LL res = 0;
    while ( x )
    {
        res += c1[x];
        x -= lowbit ( x );
    }
    return res;
}

LL sum2 ( int x )
{
    LL res = 0;
    while ( x )
    {
        res += c2[x];
        x -= lowbit ( x );
    }
    return res;
}

typedef pair<int,int> PII;

vector<int> e[MAX];
vector<int> chain[MAX];
vector<PII> a[MAX];
vector<LL> w[MAX];
vector<LL> val[MAX];

int fa[MAX];
int times;
bool used[MAX];
int l[MAX];
int r[MAX];

int _find ( int x )
{
    return fa[x] == x ? x: fa[x] = _find ( fa[x]);
}

void LCA ( int u )
{
    fa[u] = u;
    l[u] = ++times;
    used[u] = true;
    for ( int i = 0 ; i < e[u].size() ; i++ )
    {
        int v = e[u][i];
        if ( used[v] ) continue;
        LCA ( v );
        fa[v] = u;
    }
    for ( int i = 0 ; i < chain[u].size() ; i++ )
    {
        int v = chain[u][i];
        if ( !used[v] ) continue;
        int x = _find ( v );
        a[x].push_back ( make_pair ( u , v ));
        w[x].push_back ( val[u][i] );
    }
    r[u] = ++times;
}

void dfs ( int u , int p )
{
    sum[u] = 0;
    d[u] = 0;
    for ( int i = 0 ; i < e[u].size() ; i++ )
    {
        int v = e[u][i];
        if ( v == p ) continue;
        dfs ( v , u );
        sum[u] += d[v];
    }
    for ( int i = 0 ; i < a[u].size() ; i++ )
    {
        int x = a[u][i].first;
        int y = a[u][i].second;
        LL temp = sum1(l[x]) + sum1(l[y]) + sum[u]
                -sum2(l[x]) - sum2(l[y]);
        d[u] = max ( temp + w[u][i] , d[u] );
    }
    d[u] = max ( d[u] , sum[u] );
    add1 ( l[u] , sum[u] );
    add1 ( r[u] , -sum[u] );
    add2 ( l[u] , d[u] );
    add2 ( r[u] , -d[u] );
}

void init ( )
{
    times = 0;
    memset ( c1 , 0 , sizeof ( c1 ) );
    memset ( c2 , 0 , sizeof ( c2 ));
    memset ( used , 0 , sizeof ( used ));
    for ( int i = 0 ; i < MAX ; i++ )
    {
        e[i].clear();
        val[i].clear();
        a[i].clear();
        w[i].clear();
        chain[i].clear();
    }
}

int main ( )
{
    int u,v,x;
    scanf ( "%d" , &t );
    while ( t-- )
    {
        init();
        scanf ( "%d%d" , &n , &m );
        int nn = n-1;
        while ( nn-- )
        {
            scanf ( "%d%d" , &u , &v );
            e[u].push_back ( v );
            e[v].push_back ( u );
        }
        n = n*2;
        while ( m-- )
        {
            scanf ( "%d%d%d" , &u , &v , &x );
            chain[u].push_back ( v );
            chain[v].push_back ( u );
            val[u].push_back ( x );
            val[v].push_back ( x );
        }
        //cout <<"YES" << endl;
        LCA ( 1 );
        dfs ( 1, -1 );
        printf ( "%I64d\n" , d[1] );
    }
}

 

HDU 5293

标签:

原文地址:http://www.cnblogs.com/jie-dcai/p/4797236.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!