码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习基础篇——最大后验概率

时间:2015-09-12 13:37:52      阅读:147      评论:0      收藏:0      [点我收藏+]

标签:

最大后验估计MAP

最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,最大区别是,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。

首先,回顾上篇中的最大似然估计,假设x为独立同分布的采样,θ为模型参数,f为所使用的模型。那么最大似然估计可以表示为:

技术分享 

现在,假设θ的先验分布为g。通过贝叶斯理论,对于θ的后验分布如下式所示:

技术分享 

(贝叶斯公式:技术分享公式中,事件Bi的概率为P(Bi),事件Bi已发生条件下事件A的概率为P(ABi),事件A发生条件下事件Bi的概率为P(BiA)

最后验分布的目标为:

技术分享 

注:最大后验估计可以看做贝叶斯估计的一种特定形式。

举例来说:

假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是

    樱桃 100%

    樱桃 75% + 柠檬 25%

    樱桃 50% + 柠檬 50%

    樱桃 25% + 柠檬 75%

    柠檬 100%

如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个?

我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作

技术分享 

由于p的取值是一个离散值,即上面描述中的0,25%50%75%1。我们只需要评估一下这五个值哪个值使得似然函数最大即可,得到为袋子5。这里便是最大似然估计的结果。

上述最大似然估计有一个问题,就是没有考虑到模型本身的概率分布,下面我们扩展这个饼干的问题。

假设拿到袋子15的机率都是0.1,拿到24的机率都是0.2,拿到3的机率是0.4,那同样上述问题的da‘an呢?这个时候就变MAP了。我们根据公式

技术分享 

写出我们的MAP函数。  

根据题意的描述可知,p的取值分别为0,25%50%75%1g的取值分别为0.10.2,0.4,0.2,0.1.分别计算出MAP函数的结果为:0,0.0125,0.125,0.28125,0.1.由上可知,通过MAP估计可得结果是从第四个袋子中取得的最高。

  上述都是离散的变量,那么连续的变量呢?假设技术分享为独立同分布的技术分享(正态分布),μ有一个先验的概率分布为技术分享。那么我们想根据技术分享来找到μ的最大后验概率。根据前面的描述,写出MAP函数为:

技术分享 

  此时我们在两边取对数可知。所求上式的最大值可以等同于求

技术分享 

的最小值。求导可得所求的μ为

技术分享 

  以上便是对于连续变量的MAP求解的过程。

MAP中我们应注意的是:

MAPMLE最大区别是MAP中加入了模型参数本身的概率分布,或者说。MLE中认为模型参数本身的概率的是均匀的,即该概率为一个固定值。

参考博客:

http://www.cnblogs.com/liliu/archive/2010/11/24/1886110.html

机器学习基础篇——最大后验概率

标签:

原文地址:http://my.oschina.net/dfsj66011/blog/505263

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!