码迷,mamicode.com
首页 > 其他好文 > 详细

UFLDL 教程学习笔记(三)

时间:2015-09-12 17:43:20      阅读:357      评论:0      收藏:0      [点我收藏+]

标签:

   教程地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/

   logstic regression是二分类的问题,如果想要多分类,就得用softmax regression。

   理论部分参考这位博主的博文:http://www.cnblogs.com/tornadomeet/archive/2013/03/22/2975978.html

   要注意logistic regression和softmax regression之间的不同,在不同场合用不同的方法。

 

   实验部分看了好久,一直不明白,一是因为matlab不熟悉,还有一方面是变量的维数一直没搞明白。

   这位博主给出了代码的详细解释,终于能看懂了:http://www.cnblogs.com/happylion/p/4225830.html

   他的字体不容易看,我重新整理下,并加些注释。

   我们首先展示下我们训练样本部分的图片和label:

   

   1: images = loadMNISTImages(‘train-images.idx3-ubyte‘);%得到的images是一个784*60000的矩阵,意思是每一列是一幅28*28的图像展成了一列,
   2: %一共有60000幅图像。
   3: labels = loadMNISTLabels(‘train-labels.idx1-ubyte‘);
   4: display_network(images(:,1:100)); % Show the first 100 images
   5: disp(labels(1:10));

  下面我们进行训练,首先我们定义一些softmax模型常量:

   

   1: inputSize = 28 * 28; % Size of input vector (MNIST images are 28x28)
   2: inputSize =inputSize +1;% softmx的输入还要加上一维(x0=1),也是θj向量的维度
   3: numClasses = 10;     % Number of classes (MNIST images fall into 10 classes)
   4: lambda = 1e-4; % Weight decay parameter

导入训练样本数据
   1: images = loadMNISTImages(‘train-images.idx3-ubyte‘);%得到的images是一个784*60000的矩阵,意思是每一列是一
   2: %幅28*28的图像展成了一列,一共有60000幅图像。
   3: labels = loadMNISTLabels(‘train-labels.idx1-ubyte‘);
   4: labels(labels==0) = 10; % 因为这里类别是1,2..k,从0开始的,所以这里把labels中的0映射成10
   5:  
   6: inputData = images;
   7: inputData = [ones(1,60000); inputData];%每个样本都要增加一个x0=1

 

初始化模型参数:

   1: theta = 0.005 * randn(inputSize*numClasses, 1);

接下来也是最重要的一步就是:给定模型参数的情况下,求训练样本的softmax的cost function和梯度,即

   1: [cost, grad] = softmax_regression_vec(theta,inputData ,labels,lambda );

接下来我们就要写softmax_regression_vec函数:

   1: function [f,g] = softmax_regression_vec(theta, X,y,lambda )  
   2: %下面的n和inputSize指数据有多少维(包括新加的x0=1这一维),也是θj向量的维度
   3: %这里y是1,2....到k,从1开始的 
   4:   m=size(X,2);%X每一列是一个样本,m是指有m个样本  
   5:   n=size(X,1);  %n指代的前面说了
   6:   theta=reshape(theta, n, []); %也就是把theta设置成这样矩阵:有inputSize行也就是n行,每一列是一个θj,有k列。这样的θ矩阵跟前面理论部分的θ矩阵不一样,存在
%转置关系,为什么这样呢?这样这样的话在后面的reshape和矩阵A(:)这样的操作,方便,都是按列进行的,还原也方便。所以只好程序中出现的θ矩阵都是这样的,k列,跟理论部分的相反。
   7:   % initialize objective value and gradient.  
   8:   f = 0;  
   9:   g = zeros(size(theta));  
  10:   h = theta‘*X;%h是k行m列的矩阵,见图1.(之前一直不理解h矩阵是什么样的,看下图就明白了)
        技术分享

   1: a = exp(h);  

   2:  p = bsxfun(@rdivide,a,sum(a)); % sum(a)是一个行向量,每个元素是a矩阵的每一列的和。然后运用bsxfun(@rdivide,,)

   3:  %是a矩阵的第i列的每个元素除以 sum(a)向量的第i个元素。得到的p矩阵大小和图1一样,每个元素如图2.
   技术分享

   1: i = sub2ind(size(c), y‘,1:size(c,2)); %y‘,1:size(c,2)这两个向量必须同时是行向量或列向量

   2:   %因为我们接下来每一个样本xi对应的yi是几,就去找到p的每一列中,所对应的第几个元素就是要找的,如图4.首先使用sub2ind

   3:   %sub2ind: 在matlab中矩阵是按一列一列的存储的,比如A=[1 2 3;4 5 6]

   4: %那么A(2)=4,A(3)=2...而这个函数作用就是比如 sub2ind(size(A),2,1)就是返回A的第2行第一列的元素存储的下标,因为

   5: %A(2)=4,所以存储的下标是2,所以这里返回2.这里sub2ind(size(A),2,1)的2,1也可以换成向量[a1,a2..],[b1,b2..]但是注意

   6: %这两个向量必须同时是行向量或列向量,而不能一个是行向量一个是列向量。所以返回的

   7: %第一个元素是A的第a1行第b1列的元素存储的下标,返回的第,二个元素是A的第a2行第b2列的元素存储的下标...i是一个向量,c(i)得到的

   8: %向量的每一个元素就是p中每一列你前面要找的的元素。

注:sub2ind(size(A),m,n)是得到A中m行n列这个元素的标号,具体参考:http://blog.csdn.net/djh512/article/details/6785975
在上面的代码中,得到的是y(i)=j的元素所对应的标号。
技术分享
 
   1: values = c(i);  

   2:  f = -(1/m)*sum(values)+ lambda/2 * sum(theta(:) .^ 2);  %这个就是cost function 


最后求梯度:
   1: d = full(sparse(1:m,y,1)); %d为一个稀疏矩阵,有m行k列(k是类别的个数),这个矩阵的(1,y(1))、(2,y(2))
   2:   %....(m,y(m))位置都是1。
   3:   g = (1/m)*X*(p‘-d)+ lambda * theta; %这个g和theta矩阵的结构一样。 
   4:   g=g(:); % 再还原成向量的形式,这里(:)和reshape都是按列进行的,所以里面位置并没有改变。
注:sparse(i,j,s,m,n)构成一个稀疏矩阵,full则是把稀疏矩阵转为全矩阵。具体参考:http://blog.csdn.net/meng4411yu/article/details/8840612
下面这段话我没看明白:

    我们想求梯度矩阵g,这里的g和θ=[θ1,θ2,…,θk]矩阵大小size一样(跟博客中的θ矩阵存在转置关系,之所有代码中这么做,是因为这样再把参数矩阵转成一个向量或转回去利用g(:)或reshape函数按列比较方面),

   是n行k列的矩阵。n是θj或一个样本xi(包括截距1这一维)的维度大小,k是类别个数。m是样本个数。

 

            我们想用矢量编程来求g矩阵:


          我们有样本X(代码中每一列是一个样本,也即X为n行m列),那么g = (1/m).*X*(p‘-d)即是。比如,X的第 i 行乘以(p‘-d)的第 j 列就是X(i,j)的值。(正是这种行向量乘以列向量是对应元素相乘再相加就 完成了公式里的Σ,这也是矢量编程的核心)

         

          ok,现在我们这个函数写完了,我们想验证下,我们写的这个求导数或着说梯度的这个公式正确不正确,我们还是用之前博客提到的用求导公式来验证,因为你求softmax模型某个参数的导数跟你输入的数据是什么、多少都没有关系,所以我们这有用一些简单的随意写得数据和label,然后随意取一个参数进行验证是不是正确,这些程序在前面已经有了,就不进行讲解了。

           这段程序没跑过,有空跑跑看。

   1: % DEBUG = true; % Set DEBUG to true when debugging.
   2: DEBUG = false;
   3: if DEBUG
   4:     inputSize = 9;
   5:     inputData = randn(8, 100);
   7:     inputData = [ones(1,100);inputData];
   8:     labels = randi(10, 100, 1);%从[1,100]中随机生成一个100*1的列向量
  10: end
  12: % Randomly initialise theta
  13: theta = 0.005 * randn(inputSize*numClasses, 1);
   1: [cost, grad] = softmax_regression_vec(theta,inputData ,labels,lambda );
   2:                                      
   3: if DEBUG
   4:  numGrad = computeNumericalGradient( @(theta) softmax_regression_vec(theta,inputData ,labels,lambda) ,theta);
   5:  
   6:     % Use this to visually compare the gradients side by side
   7:     disp([numGrad grad]); 
   8:  
   9:     % Compare numerically computed gradients with those computed analytically
  10:     diff = norm(numGrad-grad)/norm(numGrad+grad);
  11:     disp(diff); 
  12:     % The difference should be small. 
  13:     % In our implementation, these values are usually less than 1e-7.
  14:  
  15:     % When your gradients are correct, congratulations!
  16: end

UFLDL 教程学习笔记(三)

标签:

原文地址:http://www.cnblogs.com/573177885qq/p/4803264.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!