标签:
对流行Hadoop做了一些最基本的了解,暂时没太大感觉,恩先记点笔记吧. = =
一、下载虚拟机镜像
目前比较流行的有以下三个:
(CHD) http://www.cloudera.com
(HDP) http://hortonworks.com/
(MapR) http://www.mapr.com
本文使用HDP的沙盘
下载地址 http://hortonworks.com/products/hortonworks-sandbox/#install
我使用的是 Hyper-V 的镜像 , 配置可以查看下载地址旁边的文档
二、使用HDP沙盘
hadoop fs -ls /
mkdir /home/bihell wget http://www.grouplens.org/system/files/ml-100k.zip unzip ml-100k.zip
hadoop fs -mkdir /bihell/ hadoop fs -mkdir /bihell/movies hadoop fs -mkdir /bihell/userinfo
hadoop fs -put u.item /bihell/movies hadoop fs -put u.info /bihell/userinfo
另外还有一个拷贝命令 fs –cp
hadoop fs -cp /bihell/movies/u.item /bihell
删除命令 fs -rm
hadoop fs -rm /bihell/u.item
拷贝多个文件
hadoop fs -mkdir /bihell/test hadoop fs -cp /bihell/movies/u.item /bihell/userinfo/u.info /bihell/test
递归删除文件
hadoop fs -rm -r -skipTrash /bihell/test
显示文件内容
hadoop fs -cat /bihell/movies/* |less
三、 使用hue ui 的文件浏览器操作文件
根据沙盘的提示访问 http://192.168.56.101:8000/filebrowser/#/ 我们可以看到刚才建立的目录。 (还是UI方便点啊)
一、先看一下Demo里面的Hive目录
hadoop fs -ls /apps/hive/warehouse
Found 3 items drwxrwxrwx - hive hdfs 0 2015-08-20 09:05 /apps/hive/warehouse/sample_07 drwxrwxrwx - hive hdfs 0 2015-08-20 09:05 /apps/hive/warehouse/sample_08 drwxrwxrwx - hive hdfs 0 2015-08-20 08:58 /apps/hive/warehouse/xademo.db
hadoop fs -ls /apps/hive/warehouse/sample_07
Found 1 items -rwxr-xr-x 1 hue hue 46055 2015-08-20 08:46 /apps/hive/warehouse/sample_07/sample_07
查看文件内容
hadoop fs -cat /apps/hive/warehouse/sample_07/sample_07 | less
二、使用hive命令
进入hive数据库
hive
显示hive中的数据库
show databases;
显示表格
show tables; show tables ‘*08*‘;
清空屏幕
!clear;
进一步查看表格结构
describe sample_07; describe extended sample_07 ;
创建数据库
create database bihell;
使用hadoop fs命令查看下hive 目录,我们刚才创建的数据库文件应该在里面了
!hadoop fs -ls /apps/hive/warehouse/;
结果如下:
Found 4 items drwxrwxrwx - root hdfs 0 2015-09-12 08:57 /apps/hive/warehouse/bihell.db drwxrwxrwx - hive hdfs 0 2015-08-20 09:05 /apps/hive/warehouse/sample_07 drwxrwxrwx - hive hdfs 0 2015-08-20 09:05 /apps/hive/warehouse/sample_08 drwxrwxrwx - hive hdfs 0 2015-08-20 08:58 /apps/hive/warehouse/xademo.db
三、使用建立的数据库
一直用命令行比较吃力,我们也可用ui界面
在我们新建的bihell数据库中建立表格
CREATE TABLE movies ( movie_id INT, movie_title STRING, release_date STRING, video_release_date STRING, imdb_url STRING, unknown INT, action INT, adventure INT, animation INT, children INT, comedy INT, crime INT, documentary INT, drama INT, fantasy INT, film_noir INT, horror INT, musical INT, mystery INT, romance INT, sci_fi INT, thriller INT, war INT, Western INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘|‘ STORED AS TEXTFILE;
创建完毕以后点击Tables可以看到我们刚才创建的表格
在SSH执行文件命令,我们可以看到bihell.db下面多了一个目录
hadoop fs -ls /apps/hive/warehouse/bihell.db
Found 1 items drwxrwxrwx - hive hdfs 0 2015-09-12 09:09 /apps/hive/warehouse/bihell.db/movies
四、进入hive ,我们导入一些数据进去
导入数据
lOAD DATA INPATH ‘/bihell/userinfo‘ INTO TABLE movies;
清空数据
truncate table movies;
导入并覆盖原有数据
load data inpath ‘/bihell/movies‘ overwrite into table movies;
四、建立External表与RCFile 表
前面我们建立表以后导入数据到表中, 目录中的文件会被删除,现在我们直接建立表并指向我们所在的文件目录,建立外部表.
复原文件
!hadoop fs -put /home/bihell/ml-100k/u.user /bihell/userinfo;
建立另外一个表格,注意有指定路径
CREATE EXTERNAL TABLE users ( user_id INT, age INT, gender STRING, occupation STRING, zip_code STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘|‘ STORED AS TEXTFILE LOCATION ‘/bihell/userinfo‘;
查看users的schema
describe formatted users;
查询表
SELECT * FROM users limit 100;
创建 RCFile 表格
CREATE TABLE occupation_count STORED AS RCFile AS SELECT COUNT(*), occupation FROM users GROUP BY occupation;
引用另外一个表创建一个空表
CREATE TABLE occupation2 LIKE occupation_count;
我们之前已经用了部分hive查询,现在深入一下
一、复杂类型
Arrays – ARRAY<data_type>
Maps -- MAP<primitive,data_type>
Struct -- STRUCT<col_name:data_type[COMMENT col_comment],…>
Union Type – UNIONYTPE<data_type,data_type,…>
create table movies (
movie_name string,
participants ARRAY <string>,
release_dates MAP <string,timestamp>,
studio_addr STRUCT <state:string,city:string,zip:string,streetnbr:int,streetname:string,unit:string>,
complex_participants MAP<string,STRUCT<address:string,attributes MAP<string,string>>>
misc UNIONTYPE <int,string,ARRAY<double>>
);
查询方式
select movie_name, participants[0], release_dates[“USA”], studio_addr.zip, complex_participants[“Leonardo DiCaprio”].attributes[“fav_color”], misc from movies;
二、Partitioned Tables
这个章节主要讲述加载与管理Hive中的数据
前面我们使用了CREATE TABLE 以及 CREATE EXTERNAL TABLE 本文我们要看下Table Partitions
创建分区表:
CREATE TABLE page_views( eventTime STRING, userid STRING) PARTITIONED BY (dt STRING, applicationtype STRING) STORED AS TEXTFILE;
数据库文件默认地址 :
/apps/hive/warehouse/page_views
当你每次导入数据的时候都会为你建立partition ,比如
LOAD DATA INPATH ‘/mydata/android‘/Aug_10_2013/pageviews/’ INTO TABLE page_views PARTITION (dt = ‘2013-08-10’, applicationtype = ‘android’);
生成分区如下:
/apps/hive/warehouse/page_views/dt=2013-08-10/application=android
当然我们也可以覆盖导入
LOAD DATA INPATH ‘/mydata/android‘/Aug_10_2013/pageviews/’ OVERWRITE INTO TABLE page_views PARTITION (dt = ‘2013-08-10’, applicationtype = ‘android’);
创建语句中dt和applicationtype 是virtual partition columns. 如果你describe table,会发现所有字段显示和正常表一样
eventTime STRING
userid STRING
page STRING
dt STRING
applicationtype STRING
可以直接用于查询
select dt as eventDate,page,count(*) as pviewCount From page_views where applicationtype = ‘iPhone’;
三、External Partitioned Tables
相比分区表,只是多了一个EXTERNAL ,我们注意到这里没有指定location ,添加文件的时候才需要指定
CREATE EXTERNAL TABLE page_views( eventTime STRING, userid STRING) PARTITIONED BY (dt STRING, applicationtype STRING) STORED AS TEXTFILE;
添加文件
ALTER TABLE page_views ADD PARTITION ( dt = ‘2013-09-09’, applicationtype = ‘Windows Phone 8’) LOCATION ‘/somewhere/on/hdfs/data/2013-09-09/wp8’; ALTER TABLE page_view ADD PARTITION (dt=’2013-09-09’,applicationtype=’iPhone’) LOCATION ‘hdfs://NameNode/somewhere/on/hdfs/data/iphone/current’; ALTER TABLE page_views ADD IF NOT EXSTS PARTITION (dt=’2013-09-09’,applicationtype=’iPhone’) LOCATION ‘/somewhere/on/hdfs/data/iphone/current’; PARTITION (dt=’2013-09-08’,applicationtype=’iPhone’) LOCATION ‘/somewhere/on/hdfs/data/prev1/iphone; PARTITION (dt=’2013-09-07’,applicationtype=’iPhone’) LOCATION ‘/somewhere/on/hdfs/data/iphone/prev2;
四、实际操作
EXTERNAL PARTITION TABLE
--建立目录 hadoop fs -mkdir /bihell/logs/pv_ext/somedatafor_7_11 /bihell/logs/pv_ext/2013/08/11/log/data --建立EXTERNAL TABLE CREATE EXTERNAL TABLE page_views_ext (logtime STRING, userid INT, ip STRING, page STRING, ref STRING, os STRING, os_ver STRING, agent STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘\t‘ LOCATION ‘/bihell/logs/pv_ext/‘; --查看表格详细信息 DESCRIBE FORMATTED page_views_ext; --查看执行计划 EXPLAIN SELECT * FROM page_views_ext WHERE userid = 13; --删除表 DROP TABLE page_views_ext; --创建EXTERNAL Partition Table CREATE EXTERNAL TABLE page_views_ext (logtime STRING, userid INT, ip STRING, page STRING, ref STRING, os STRING, os_ver STRING, agent STRING) PARTITIONED BY (y STRING, m STRING, d STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘\t‘ LOCATION ‘/bihell/logs/pv_ext/‘; --将日志传送至Hadoop目录 !hadoop fs -put /media/sf_VM_Share/LogFiles/log_2013711_155354.log /bihell/logs/pv_ext/somedatafor_7_11 --因为是partition table 所以此时查询该表是没有任何内容的 SELECT * FROM page_views_ext; --添加文件 ALTER TABLE page_views_ext ADD PARTITION (y=‘2013‘, m=‘07‘, d=‘11‘) LOCATION ‘/bihell/logs/pv_ext/somedatafor_7_11‘; --再次查询 SELECT * FROM page_views_ext LIMIT 100; --describe table DESCRIBE FORMATTED page_views_ext; --再次查看执行计划 我们发现predicate还是13, 并没有加上 m,d EXPLAIN SELECT * FROM page_views_ext WHERE userid=13 AND m=‘07‘AND d=‘11‘ LIMIT 100; --再添加一个文件 !hadoop fs -put /media/sf_VM_Share/LogFiles/log_2013811_16136.log /bihell/logs/pv_ext/2013/08/11/log/data ALTER TABLE page_views_ext ADD PARTITION (y=‘2013‘, m=‘08‘, d=‘11‘) LOCATION ‘/bihell/logs/pv_ext/2013/08/11/log/data‘; --查询 SELECT COUNT(*) as RecordCount, m FROM page_views_ext WHERE d=‘11‘ GROUP BY m; --另一种方式添加数据 !hadoop fs -put /media/sf_VM_Share/LogFiles/log_2013720_162256.log /bihell/logs/pv_ext/y=2013/m=07/d=20/data.log SELECT * FROM page_views_ext WHERE m=‘07‘ AND d=‘20‘ LIMIT 100; MSCK REPAIR TABLE page_views_ext; SELECT * FROM page_views_ext WHERE m=‘07‘ AND d=‘20‘ LIMIT 100;
PARTITION TABLE
CREATE TABLE page_views (logtime STRING, userid INT, ip STRING, page STRING, ref STRING, os STRING, os_ver STRING, agent STRING) PARTITIONED BY (y STRING, m STRING, d STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘\t‘; LOAD DATA LOCAL INPATH ‘/media/sf_VM_Share/LogFiles/log_2013805_16210.log‘ OVERWRITE INTO TABLE page_views PARTITION (y=‘2013‘, m=‘08‘, d=‘05‘); !hadoop fs -ls /apps/hive/warehouse/bihell.db/page_views/;
Multiple Inserts
--Syntax
FROM form_statement
INSERT OVERWRITE TABLE table1 [PARTITION(partcol1=val1,partcol2=val2)] select_statement1
INSERT INTO TABLE table2 [PARTITION(partcol1=val1,partcol2=val2)[IF NOT EXISTS]] select_statements2
INSERT OVERWRITE DIRECTORY ‘path’ select_statement3;
-- 提取操作 FROM movies INSERT OVERWRITE TABLE horror_movies SELECT * WHERE horror = 1 AND release_date=’8/23/2013’ INSERT INTO action_movies SELECT * WHERE action = 1 AND release_date = ‘8/23/2013’; FROM (SELECT * FROM movies WHERE release_date =’8/23/2013’) src INSERT OVERWRITE TABLE horror_movies SELECT * WHERE horror =1 INSERT INTO action_movies SELECT * WHERE action = 1;
Dynamic Partition Inserts
CREATE TABLE views_stg (eventTime STRING, userid STRING) PARTITIONED BY(dt STRING,applicationtype STRING,page STRING); FROM page_views src INSERT OVERWRITE TABLE views_stg PARTITION (dt=’2013-09-13’,applicationtype=’Web’,page=’Home’) SELECT src.eventTime,src.userid WHERE dt=’2013-09-13’ AND applicationtype=’Web’,page=’Home’ INSERT OVERWRITE TABLE views_stg PARTITION (dt=’2013-09-14,applicationtype=’Web’,page=’Cart’) SELECT src.eventTime,src.userid WHERE dt=’2013-09-14’ AND applicationtype=’Web’,page=’Cart’ INSERT OVERWRITE TABLE views_stg PARTITION (dt=’2013-09-15’,applicationtype=’Web’,page=’Checkout’) SELECT src.eventTime,src.userid WHERE dt=’2013-09-15’ AND applicationtype=’Web’,page=’Checkout’ FROM page_views src INSERT OVERWRITE TABLE views_stg PARTITION (applicationtype=’Web’,dt,page) SELECT src.eventTime,src.userid,src.dt,src.page WHERE applicationtype=’Web’
实例
!hadoop fs -mkdir /bihell/logs/multi_insert; !hadoop fs -put /media/sf_VM_Share/LogFiles/log_2012613_161117.log /media/sf_VM_Share/LogFiles/log_2013803_15590.log /bihell/logs/multi_insert -- 创建EXTERNAL TABLE CREATE EXTERNAL TABLE staging (logtime STRING, userid INT, ip STRING, page STRING, ref STRING, os STRING, os_ver STRING, agent STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘\t‘ LOCATION ‘/bihell/logs/multi_insert‘; --批量插入 PARTITION INSERT INTO TABLE page_views PARTITION (y, m, d) SELECT logtime, userid, ip, page, ref, os, os_ver, agent, substr(logtime, 7, 4), substr(logtime, 1, 2), substr(logtime, 4, 2) FROM staging; SET hive.exec.dynamic.partition.mode=nonstrict; INSERT INTO TABLE page_views PARTITION (y, m, d) SELECT logtime, userid, ip, page, ref, os, os_ver, agent, substr(logtime, 7, 4), substr(logtime, 1, 2), substr(logtime, 4, 2) FROM staging; SELECT * FROM page_views WHERE y=‘2012‘ LIMIT 100; select regexp_replace(logtime, ‘/‘, ‘-‘) from staging; select substr(logtime, 7, 4), substr(logtime, 1, 2), substr(logtime, 4, 2) from staging;
标签:
原文地址:http://www.cnblogs.com/haseo/p/study-hadoop.html