码迷,mamicode.com
首页 > 其他好文 > 详细

HBase with MapReduce (Summary)

时间:2015-09-18 20:14:20      阅读:199      评论:0      收藏:0      [点我收藏+]

标签:

我们知道,hbase没有像关系型的数据库拥有强大的查询功能和统计功能,本文实现了如何利用mapreduce来统计hbase中单元值出现的个数,并将结果携带目标的表中,

(1)mapper的实现

package com.datacenter.HbaseMapReduce.Summary;

import java.io.IOException;
import java.util.NavigableMap;
import java.util.Map.Entry;

import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class SummaryMapper extends TableMapper<Text, IntWritable> { // 这里是指定map中context输出的类型

	public static final byte[] CF = "cf".getBytes();
	public static final byte[] ATTR1 = "attr1".getBytes();

	private final IntWritable ONE = new IntWritable(1);
	private Text text = new Text();

	@Override
	protected void map(ImmutableBytesWritable key, Result value, Context context)
			throws IOException, InterruptedException {
		// TODO Auto-generated method stub

/*		byte[] ss = value.getValue(CF, ATTR1); // 这里是只是获取特定的列族,特定列的值的个数,也可以根据实际的情况修改
		String val = new String(ss);
		text.set(val); // we can only emit Writables..
		context.write(text, ONE);*/

		//统计所有的列族和列的值的个数
		try {
			DealResult( value , context);
		} catch (Exception e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}

	// 统计所有列族和列的值的个数
	public void DealResult(Result rs ,Context context) throws Exception {

		if (rs.isEmpty()) {
			System.out.println("result is empty!");
			return;
		}

		NavigableMap<byte[], NavigableMap<byte[], NavigableMap<Long, byte[]>>> tableResulrt = rs
				.getMap();
		String rowkey = Bytes.toString(rs.getRow()); // actain rowkey
		///System.out.println("rowkey->" + rowkey);
		for (Entry<byte[], NavigableMap<byte[], NavigableMap<Long, byte[]>>> familyResult : tableResulrt
				.entrySet()) {
			//System.out.print("\tfamily->" + Bytes.toString(temp.getKey()));
			for (Entry<byte[], NavigableMap<Long, byte[]>> columnResult : familyResult
					.getValue().entrySet()) {
				///System.out.print("\tcol->" + Bytes.toString(value.getKey()));
				for (Entry<Long, byte[]> valueResult : columnResult.getValue().entrySet()) {
					//System.out.print("\tvesion->" + va.getKey());
					//System.out.print("\tvalue->"+ Bytes.toString(va.getValue()));
					//System.out.println();
					text.set(new String(valueResult.getValue()));
					context.write(text, ONE);
				}
			}
		}
	}

}

 (2)reduce的实现

package com.datacenter.HbaseMapReduce.Summary;

import java.io.IOException;

import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class SummaryReducer extends
		TableReducer<Text, IntWritable, ImmutableBytesWritable> {

	public static final byte[] CF = "cf".getBytes();
	public static final byte[] COUNT = "count".getBytes();

	@SuppressWarnings("deprecation")
	@Override
	protected void reduce(Text key, Iterable<IntWritable> values, Context context)
			throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		int i = 0;
		for (IntWritable val : values) {
			i += val.get();
		}
		Put put = new Put(Bytes.toBytes(key.toString()));
		//Cell s=new 
		put.add(CF, COUNT, 100,Bytes.toBytes(i));  //在对应的列族中增加一列count,记录其个数
		
		
		context.write(null, put);
	}

}

 (3)主类加载信息的实现

package com.datacenter.HbaseMapReduce.Summary;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HConnection;
import org.apache.hadoop.hbase.client.HConnectionManager;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;

//统计hbase表中,每行的值在整个表的个数

public class SummaryMain {
	static String rootdir = "hdfs://hadoop3:8020/hbase";
	static String zkServer = "hadoop3";
	static String port = "2181";

	private static Configuration conf;
	private static HConnection hConn = null;

	public static void HbaseUtil(String rootDir, String zkServer, String port) {

		conf = HBaseConfiguration.create();// 获取默认配置信息
		conf.set("hbase.rootdir", rootDir);
		conf.set("hbase.zookeeper.quorum", zkServer);
		conf.set("hbase.zookeeper.property.clientPort", port);

		try {
			hConn = HConnectionManager.createConnection(conf);
		} catch (IOException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}

	public static void main(String[] args) throws Exception {
		// TODO Auto-generated method stub
		HbaseUtil(rootdir, zkServer, port);

		Job job = new Job(conf, "ExampleSummary");
		job.setJarByClass(SummaryMain.class); // class that contains mapper and
												// reducer

		Scan scan = new Scan();
		scan.setCaching(500); // 1 is the default in Scan, which will be bad for
								// MapReduce jobs
		scan.setCacheBlocks(false); // don‘t set to true for MR jobs
		// set other scan attrs

		TableMapReduceUtil.initTableMapperJob("score", // input table
				scan, // Scan instance to control CF and attribute selection
				SummaryMapper.class, // mapper class
				Text.class, // mapper output key
				IntWritable.class, // mapper output value
				job);
		TableMapReduceUtil.initTableReducerJob("test", // output table
				SummaryReducer.class, // reducer class
				job);
		job.setNumReduceTasks(1); // at least one, adjust as required

		boolean b = job.waitForCompletion(true);
		if (!b) {
			throw new IOException("error with job!");
		}

	}

}

 

HBase with MapReduce (Summary)

标签:

原文地址:http://www.cnblogs.com/ljy2013/p/4820056.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!