标签:
Hadoop YARN同时支持内存和CPU两种资源的调度,本文介绍如何配置YARN对内存和CPU的使用。
YARN作为一个资源调度器,应该考虑到集群里面每一台机子的计算资源,然后根据application申请的资源进行分配Container。Container是YARN里面资源分配的基本单位,具有一定的内存以及CPU资源。
在YARN集群中,平衡内存、CPU、磁盘的资源的很重要的,根据经验,每两个container使用一块磁盘以及一个CPU核的时候可以使集群的资源得到一个比较好的利用。
关于 内存 相关的配置可以参考hortonwork公司的文档 Determine HDP Memory Configuration Settings 来配置你的集群。
YARN以及MAPREDUCE所有可用的内存资源应该要除去系统运行需要的以及其他的hadoop的一些程序,总共保留的内存=系统内存+HBASE内存。
可以参考下面的表格确定应该保留的内存:
每台机子内存 | 系统需要的内存 | HBase需要的内存 |
---|---|---|
4GB | 1GB | 1GB |
8GB | 2GB | 1GB |
16GB | 2GB | 2GB |
24GB | 4GB | 4GB |
48GB | 6GB | 8GB |
64GB | 8GB | 8GB |
72GB | 8GB | 8GB |
96GB | 12GB | 16GB |
128GB | 24GB | 24GB |
255GB | 32GB | 32GB |
512GB | 64GB | 64GB |
计算每台机子最多可以拥有多少个container,可以使用下面的公式:
containers = min (2*CORES, 1.8*DISKS, (Total available RAM) / MIN_CONTAINER_SIZE)
说明:
CORES
为机器CPU核数DISKS
为机器上挂载的磁盘个数Total available RAM
为机器总内存MIN_CONTAINER_SIZE
是指container最小的容量大小,这需要根据具体情况去设置,可以参考下面的表格:每台机子可用的RAM | container最小值 |
---|---|
小于4GB | 256MB |
4GB到8GB之间 | 512MB |
8GB到24GB之间 | 1024MB |
大于24GB | 2048MB |
每个container的平均使用内存大小计算方式为:
RAM-per-container = max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))
通过上面的计算,YARN以及MAPREDUCE可以这样配置:
配置文件 | 配置设置 | 默认值 | 计算值 |
---|---|---|---|
yarn-site.xml | yarn.nodemanager.resource.memory-mb | 8192 MB | = containers * RAM-per-container |
yarn-site.xml | yarn.scheduler.minimum-allocation-mb | 1024MB | = RAM-per-container |
yarn-site.xml | yarn.scheduler.maximum-allocation-mb | 8192 MB | = containers * RAM-per-container |
yarn-site.xml (check) | yarn.app.mapreduce.am.resource.mb | 1536 MB | = 2 * RAM-per-container |
yarn-site.xml (check) | yarn.app.mapreduce.am.command-opts | -Xmx1024m | = 0.8 * 2 * RAM-per-container |
mapred-site.xml | mapreduce.map.memory.mb | 1024 MB | = RAM-per-container |
mapred-site.xml | mapreduce.reduce.memory.mb | 1024 MB | = 2 * RAM-per-container |
mapred-site.xml | mapreduce.map.java.opts | = 0.8 * RAM-per-container | |
mapred-site.xml | mapreduce.reduce.java.opts | = 0.8 * 2 * RAM-per-container |
举个例子:对于128G内存、32核CPU的机器,挂载了7个磁盘,根据上面的说明,系统保留内存为24G,不适应HBase情况下,系统剩余可用内存为104G,计算containers值如下:
containers = min (2*32, 1.8* 7 , (128-24)/2) = min (64, 12.6 , 51) = 13
计算RAM-per-container值如下:
RAM-per-container = max (2, (124-24)/13) = max (2, 8) = 8
这样集群中下面的参数配置值如下:
配置文件 | 配置设置 | 计算值 |
---|---|---|
yarn-site.xml | yarn.nodemanager.resource.memory-mb | = 13 * 8 =104 G |
yarn-site.xml | yarn.scheduler.minimum-allocation-mb | = 8G |
yarn-site.xml | yarn.scheduler.maximum-allocation-mb | = 13 * 8 = 104G |
yarn-site.xml (check) | yarn.app.mapreduce.am.resource.mb | = 2 * 8=16G |
yarn-site.xml (check) | yarn.app.mapreduce.am.command-opts | = 0.8 * 2 * 8=12.8G |
mapred-site.xml | mapreduce.map.memory.mb | = 8G |
mapred-site.xml | mapreduce.reduce.memory.mb | = 2 * 8=16G |
mapred-site.xml | mapreduce.map.java.opts | = 0.8 * 8=6.4G |
mapred-site.xml | mapreduce.reduce.java.opts | = 0.8 * 2 * 8=12.8G |
你也可以使用脚本 yarn-utils.py 来计算上面的值:
python yarn-utils.py -c 32 -m 128 -d 7 -k False
返回结果如下:
Using cores=32 memory=128GB disks=7 hbase=False
Profile: cores=32 memory=106496MB reserved=24GB usableMem=104GB disks=7
Num Container=13
Container Ram=8192MB
Used Ram=104GB
Unused Ram=24GB
yarn.scheduler.minimum-allocation-mb=8192
yarn.scheduler.maximum-allocation-mb=106496
yarn.nodemanager.resource.memory-mb=106496
mapreduce.map.memory.mb=8192
mapreduce.map.java.opts=-Xmx6553m
mapreduce.reduce.memory.mb=8192
mapreduce.reduce.java.opts=-Xmx6553m
yarn.app.mapreduce.am.resource.mb=8192
yarn.app.mapreduce.am.command-opts=-Xmx6553m
mapreduce.task.io.sort.mb=3276
对应的xml配置为:
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>8192</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>8192</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx6553m</value>
</property>
另外,还有一下几个参数:
yarn.nodemanager.vmem-pmem-ratio
:任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。yarn.nodemanager.pmem-check-enabled
:是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。yarn.nodemanager.vmem-pmem-ratio
:是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。第一个参数的意思是当一个map任务总共分配的物理内存为8G的时候,该任务的container最多内分配的堆内存为6.4G,可以分配的虚拟内存上限为8*2.1=16.8G。另外,照这样算下去,每个节点上YARN可以启动的Map数为104/8=13个,似乎偏少了,这主要是和我们挂载的磁盘数太少了有关,人为的调整 RAM-per-container
的值为4G或者更小的一个值是否更合理呢?当然,这个要监控集群实际运行情况来决定了。
YARN中目前的CPU被划分成虚拟CPU(CPU virtual Core),这里的虚拟CPU是YARN自己引入的概念,初衷是,考虑到不同节点的CPU性能可能不同,每个CPU具有的计算能力也是不一样的,比如某个物理CPU的计算能力可能是另外一个物理CPU的2倍,这时候,你可以通过为第一个物理CPU多配置几个虚拟CPU弥补这种差异。用户提交作业时,可以指定每个任务需要的虚拟CPU个数。
在YARN中,CPU相关配置参数如下:
yarn.nodemanager.resource.cpu-vcores
:表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设值为与物理CPU核数数目相同。如果你的节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。yarn.scheduler.minimum-allocation-vcores
:单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。yarn.scheduler.maximum-allocation-vcores
:单个任务可申请的最多虚拟CPU个数,默认是32。对于一个CPU核数较多的集群来说,上面的默认配置显然是不合适的,在我的测试集群中,4个节点每个机器CPU核数为32,可以配置为:
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>32</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>128</value>
</property>
根据上面的说明,我的测试集群中集群节点指标如下:
每个节点分配的物理内存、虚拟内存和CPU核数如下:
实际生产环境中,可能不会像上面那样设置,比如不会把所有节点的CPU核数都分配给Spark,需要保留一个核留给系统使用;另外,内存上限也会做些设置。
标签:
原文地址:http://www.cnblogs.com/frankzye/p/4823201.html