标签:
题意:求LCA……这棵树是单向边,入度为0的为根,只有一组查询。
解法:st求LCA(只会这个)。dp[i][j]表示第i个点的第2j个祖先是谁,转移方程dp[i][j] = dp[dp[i][j - 1]][j - 1]。先dfs一边记录dp[i][0],和点的深度,求LCA的时候先把深度大的点升到同一深度,如果此时两个点重合则说明LCA就是当前点,否则再同时上升,他俩的父亲就是LCA。
代码:
#include<stdio.h> #include<iostream> #include<algorithm> #include<string> #include<string.h> #include<math.h> #include<limits.h> #include<time.h> #include<stdlib.h> #include<map> #include<queue> #include<set> #include<stack> #include<vector> #define LL long long using namespace std; int n; vector <int> edge[10005]; int indegree[10005]; int dp[10005][16]; int deep[10005]; void dfs(int root, int d) { deep[root] = d; int len = edge[root].size(); for(int i = 0; i < len; i++) { dp[edge[root][i]][0] = root; dfs(edge[root][i], d + 1); } } void build(int root) { memset(dp, 0, sizeof dp); memset(deep, 0, sizeof deep); dfs(root, 0); dp[root][0] = root; for(int j = 1; j < 16; j++) for(int i = 1; i <= n; i++) dp[i][j] = dp[dp[i][j - 1]][j - 1]; } int lca(int a, int b) { if(deep[a] > deep[b]) swap(a, b); for(int i = 15; i >= 0; i--) if(deep[dp[b][i]] >= deep[a]) b = dp[b][i]; if(a == b) return a; for(int i = 15; i >= 0; i--) { if(dp[a][i] != dp[b][i]) { a = dp[a][i]; b = dp[b][i]; } } return dp[a][0]; } int main() { int T; while(~scanf("%d", &T)) { while(T--) { memset(indegree, 0, sizeof indegree); for(int i = 0; i < 10005; i++) edge[i].clear(); scanf("%d", &n); for(int i = 0; i < n - 1; i++) { int a, b; scanf("%d%d", &a, &b); edge[a].push_back(b); indegree[b]++; } int root; for(int i = 1; i <= n; i++) if(indegree[i] == 0) { root = i; break; } build(root); int a, b; scanf("%d%d", &a, &b); printf("%d\n", lca(a, b)); } } return 0; }
POJ 1330 Nearest Common Ancestors
标签:
原文地址:http://www.cnblogs.com/Apro/p/4827192.html