码迷,mamicode.com
首页 > 其他好文 > 详细

uva 1151(最小生成树,枚举子集)

时间:2015-09-22 21:40:01      阅读:128      评论:0      收藏:0      [点我收藏+]

标签:

题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方。另外还有q(0<=q<=8)个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相互连通,第i个套餐的花费为ci。

kruskal:

先求一次原图的最小生成树,得到n-1条边,然后每次枚举完套餐后只考虑套餐中的边和这n-1条边,则枚举套餐之后再求最小生成树。

key:

kruskal算法中,那些两端已经属于同一个连通分量的边不会再加到生成树里面。

那么买了套餐后,相当于一些边的权变为0,而对于不在套餐中的每条边e,排序在e之前的边一个也没少,反而可能多了一些权值为0的边。

所以在 原图kruskal时被扔掉的边,在购买套餐后的Kruskal中也一样会被扔掉。

技术分享
#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll int
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define repd(i, a, b) for(int i = b; i >= a; i--)
#define sfi(n) scanf("%d", &n)
#define pfi(n) printf("%d\n", n)
#define sfi2(n, m) scanf("%d%d", &n, &m)
#define sfd2(n, m) scanf("%lf%lf", &n, &m)
#define pfi2(n, m) printf("%d %d\n", n, m)
#define pfi3(a, b, c) printf("%d %d %d\n", a, b, c)
const int INF = 0x3f3f3f3f;

#define maxn 1010
#define maxm 1500010
ll w[maxm];
int m;
int r[maxm];
int u[maxm], v[maxm], p[maxn];
ll xx[maxn], yy[maxn];
int kb[maxn];
vector<int> f[9];
int n, q, num[9];
int c[9];
int cmp(const int i, const int j)
{
    return w[i] < w[j];
}
int Find(int x)
{
    return p[x] == x ? x : p[x] = Find(p[x]);
}
ll Kruskal1()
{
    ll ans = 0;
    int len = 0;
    repu(i, 0, m)
    {
        int e = r[i];
        int x = Find(u[e]);
        int y = Find(v[e]);
        if(x != y)
        {
            kb[len++] = e;
            ans += w[e];
            p[x] = y;
        }
    }
    return ans;
}

ll Kruskal2()
{
    ll ans = 0;
    int len = 0;
    int t = n - 1;
    repu(i, 0, n - 1)
    {
        int e = kb[i];
        int x = Find(u[e]);
        int y = Find(v[e]);
        if(x != y)
        {
            ans += w[e];
            p[x] = y;
        }
    }
    return ans;
}

int main()
{
    int T;
    sfi(T);
    while(T--)
    {
        sfi2(n, q);
        m = 0;
        repu(i, 0, q)
        {
            int a;
            sfi2(num[i], c[i]);
            f[i].clear();
            repu(j, 0, num[i]) sfi(a), f[i].push_back(a);
        }
        repu(i, 1, n + 1) scanf("%d%d", &xx[i], &yy[i]);
        repu(i, 1, n + 1)
        repu(j, 1 + i, n + 1)
        {
           w[m] = (xx[i] - xx[j]) * (xx[i] - xx[j]) + (yy[i] - yy[j]) * (yy[i] - yy[j]);
           u[m] = i;
           v[m] = j;
           //printf("%d %d %d %lf\n", m, i, j, w[m]);
           m++;

        }

        repu(i, 1, n + 1) p[i] = i;
        repu(i, 0, m) r[i] = i;
        sort(r, r + m, cmp);
        ll minn = Kruskal1();
        sort(kb, kb + n - 1, cmp);
        //printf("%lld\n", minn);
        int lim = 1<<q;
        ll cc;
        repu(i, 1, lim)
        {
            cc = 0;
            repu(j, 1, n + 1) p[j] = j;
            repu(j, 0, q) if((1<<j) & i)
                if(num[j])
                {
                    cc += c[j];
                    int x = Find(f[j][0]);
                    repu(k, 1, num[j])
                    {
                        int y = Find(f[j][k]);
                        if(x != y) p[y] = x;
                    }
                    //printf("%d %d\n", i, j);
                }
            minn = min(minn, cc + Kruskal2());
            //printf("%lld\n", minn);
        }
        printf("%d\n", minn);
        if(T) puts("");
    }
    return 0;
}
View Code

 

uva 1151(最小生成树,枚举子集)

标签:

原文地址:http://www.cnblogs.com/sunus/p/4830474.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!