桌面上有R 张红牌和B 张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1 美元,黑牌则付出1 美元。可以随时停止翻牌,在最优策略下平均能得到多少钱。
【思路】:
于是dp[0][0]=0
dp[i][j]=F[i-1][j]+1; (j=0)
dp[i][j]=0; (i=0)
dp[i][j]= max(0.0,(dp[i-1][j]+1)*(i/(i+j)) + (dp[i][j-1])*(j/(i+j)));
最后dp[R][B]就是期望.
原题好像要用滚动数组优化,代码如下:
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
const double eps=1e-5;
const double pi= acos(-1.0);
const int N = 1e5+10;
double dp[N];
int main(){
int R,B;
while(cin>>R>>B){
memset(dp,0,sizeof(dp));
for(int i=1; i<=R; ++i){
dp[0]=i;
for(int j=1; j<=B; ++j){
dp[j]=max(0.0,(dp[j-1]-1)*(1.0*j/(i+j))+(dp[j]+1)*(1.0*i/(i+j)));
}
}
printf("%.3f\n",dp[B]);
} return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
[TopCoder SRM420 Div1 500pt RedIsGood]【数学期望】【动态规划】
原文地址:http://blog.csdn.net/u013050857/article/details/48709959