标签:
1. (10) $\begin{align*}
\lim\limits_{n\rightarrow \infty} \frac{n^2 \arctan n}{1+n^2} = \frac{\pi}{2}
\end{align*}$
证:因为
$\begin{align*}
\frac{n^2 }{1+n^2} < 1, \arctan n < \frac{\pi}{2},
\end{align*}$
所以
$\begin{align*}
&| \frac{n^2 \arctan n}{1+n^2} - \frac{\pi}{2}| \\
&= \frac{\pi}{2} - \frac{n^2 \arctan n}{1+n^2} \\
&= \frac{\pi}{2} - \arctan n + \frac{\arctan n}{1+n^2},
\end{align*}$
又因为 $\arctan x < x$,由此得到
$\begin{align*}
& | \frac{n^2 \arctan n}{1+n^2} - \frac{\pi}{2}| \\
& < \frac{\pi}{2} - \arctan n + \frac{n}{1+n^2} \\
& = \textrm{arccot} n + \frac{n}{1+n^2} \\
& < \textrm{arccot} n + \frac{1}{n}.
\end{align*}$
因此,对任意 $\epsilon > 0 $, 只要取 $N = \max \{[\cot \frac{\epsilon}{2}]+1, [\frac{2}{\epsilon}]+1 \} $, 当正整数 $n>N$ 时,便有
$\begin{align*}
| \frac{n^2 \arctan n}{1+n^2} - \frac{\pi}{2}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\end{align*}$
标签:
原文地址:http://www.cnblogs.com/oucmath/p/4843980.html