码迷,mamicode.com
首页 > 其他好文 > 详细

使用simhash以及海明距离判断内容相似程度

时间:2015-09-29 12:49:29      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:

算法简介

SimHash也即相似hash,是一类特殊的信息指纹,常用来比较文章的相似度,与传统hash相比,传统hash只负责将原始内容尽量随机的映射为一个特征值,并保证相同的内容一定具有相同的特征值。而且如果两个hash值是相等的,则说明原始数据在一定概率下也是相等的。但通过传统hash来判断文章的内容是否相似是非常困难的,原因在于传统hash只唯一标明了其特殊性,并不能作为相似度比较的依据。

SimHash最初是由Google使用,其值不但提供了原始值是否相等这一信息,还能通过该值计算出内容的差异程度。

算法原理

simhash是由 Charikar 在2002年提出来的,参考 《Similarity estimation techniques from rounding algorithms》 。 介绍下这个算法主要原理,为了便于理解尽量不使用数学公式,分为这几步:

1、分词,把需要判断文本分词形成这个文章的特征单词。最后形成去掉噪音词的单词序列并为每个词加上权重,我们假设权重分为5个级别(1~5)。比如:“ 美国“51区”雇员称内部有9架飞碟,曾看见灰色外星人 ” ==> 分词后为 “ 美国(4) 51区(5) 雇员(3) 称(1) 内部(2) 有(1) 9架(3) 飞碟(5) 曾(1) 看见(3) 灰色(4) 外星人(5)”,括号里是代表单词在整个句子里重要程度,数字越大越重要。

2、hash,通过hash算法把每个词变成hash值,比如“美国”通过hash算法计算为 100101,“51区”通过hash算法计算为 101011。这样我们的字符串就变成了一串串数字,还记得文章开头说过的吗,要把文章变为数字计算才能提高相似度计算性能,现在是降维过程进行时。

3、加权,通过 2步骤的hash生成结果,需要按照单词的权重形成加权数字串,比如“美国”的hash值为“100101”,通过加权计算为“4 -4 -4 4 -4 4”;“51区”的hash值为“101011”,通过加权计算为 “ 5 -5 5 -5 5 5”。

4、合并,把上面各个单词算出来的序列值累加,变成只有一个序列串。比如 “美国”的 “4 -4 -4 4 -4 4”,“51区”的 “ 5 -5 5 -5 5 5”, 把每一位进行累加, “4+5 -4+-5 -4+5 4+-5 -4+5 4+5” ==》 “9 -9 1 -1 1 9”。这里作为示例只算了两个单词的,真实计算需要把所有单词的序列串累加。

5、降维,把4步算出来的 “9 -9 1 -1 1 9” 变成 0 1 串,形成我们最终的simhash签名。 如果每一位大于0 记为 1,小于0 记为 0。最后算出结果为:“1 0 1 0 1 1”。

原理图:

技术分享 

我们可以来做个测试,两个相差只有一个字符的文本串,“你妈妈喊你回家吃饭哦,回家罗回家罗” 和 “你妈妈叫你回家吃饭啦,回家罗回家罗”。

通过simhash计算结果为:

1000010010101101111111100000101011010001001111100001001011001011

1000010010101101011111100000101011010001001111100001101010001011

通过比较差异的位数就可以得到两串文本的差异,差异的位数,称之为“海明距离”,通常认为海明距离<3的是高度相似的文本。

算法实现

这里的代码引用自博客:http://my.oschina.net/leejun2005/blog/150086 ,这里表示感谢。

代码实现中使用Hanlp代替了原有的分词器。

package com.emcc.changedig.extractengine.util;

/**
 * Function: simHash 判断文本相似度,该示例程支持中文<br/>
 * date: 2013-8-6 上午1:11:48 <br/>
 * @author june
 * @version 0.1
 */
import java.io.IOException;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

import com.hankcs.hanlp.seg.common.Term;

public class SimHash
{
    private String tokens;

    private BigInteger intSimHash;

    private String strSimHash;

    private int hashbits = 64;

    public SimHash(String tokens) throws IOException
    {
        this.tokens = tokens;
        this.intSimHash = this.simHash();
    }

    public SimHash(String tokens, int hashbits) throws IOException
    {
        this.tokens = tokens;
        this.hashbits = hashbits;
        this.intSimHash = this.simHash();
    }

    HashMap<String, Integer> wordMap = new HashMap<String, Integer>();

    public BigInteger simHash() throws IOException
    {
        // 定义特征向量/数组
        int[] v = new int[this.hashbits];

        String word = null;
        List<Term> terms = SegmentationUtil.ppl(this.tokens);
        for (Term term : terms)
        {
            word = term.word;

            // 将每一个分词hash为一组固定长度的数列.比如 64bit 的一个整数.
            BigInteger t = this.hash(word);
            for (int i = 0; i < this.hashbits; i++)
            {
                BigInteger bitmask = new BigInteger("1").shiftLeft(i);

                // 建立一个长度为64的整数数组(假设要生成64位的数字指纹,也可以是其它数字),
                // 对每一个分词hash后的数列进行判断,如果是1000...1,那么数组的第一位和末尾一位加1,
                // 中间的62位减一,也就是说,逢1加1,逢0减1.一直到把所有的分词hash数列全部判断完毕.
                if (t.and(bitmask).signum() != 0)
                {
                    // 这里是计算整个文档的所有特征的向量和
                    // 这里实际使用中需要 +- 权重,比如词频,而不是简单的 +1/-1,
                    v[i] += 1;
                }
                else
                {
                    v[i] -= 1;
                }
            }
        }

        BigInteger fingerprint = new BigInteger("0");
        StringBuffer simHashBuffer = new StringBuffer();
        for (int i = 0; i < this.hashbits; i++)
        {
            // 4、最后对数组进行判断,大于0的记为1,小于等于0的记为0,得到一个 64bit 的数字指纹/签名.
            if (v[i] >= 0)
            {
                fingerprint = fingerprint.add(new BigInteger("1").shiftLeft(i));
                simHashBuffer.append("1");
            }
            else
            {
                simHashBuffer.append("0");
            }
        }
        this.strSimHash = simHashBuffer.toString();
        return fingerprint;
    }

    private BigInteger hash(String source)
    {
        if (source == null || source.length() == 0)
        {
            return new BigInteger("0");
        }
        else
        {
            char[] sourceArray = source.toCharArray();
            BigInteger x = BigInteger.valueOf(((long) sourceArray[0]) << 7);
            BigInteger m = new BigInteger("1000003");
            BigInteger mask = new BigInteger("2").pow(this.hashbits).subtract(
                    new BigInteger("1"));
            for (char item : sourceArray)
            {
                BigInteger temp = BigInteger.valueOf((long) item);
                x = x.multiply(m).xor(temp).and(mask);
            }
            x = x.xor(new BigInteger(String.valueOf(source.length())));
            if (x.equals(new BigInteger("-1")))
            {
                x = new BigInteger("-2");
            }
            return x;
        }
    }

    /**
     * 计算海明距离
     * 
     * @param other
     *             被比较值
     * @return 海明距离
     */ 
    public int hammingDistance(SimHash other)
    {

        BigInteger x = this.intSimHash.xor(other.intSimHash);
        int tot = 0;

        while (x.signum() != 0)
        {
            tot += 1;
            x = x.and(x.subtract(new BigInteger("1")));
        }
        return tot;
    }

    public int getDistance(String str1, String str2)
    {
        int distance;
        if (str1.length() != str2.length())
        {
            distance = -1;
        }
        else
        {
            distance = 0;
            for (int i = 0; i < str1.length(); i++)
            {
                if (str1.charAt(i) != str2.charAt(i))
                {
                    distance++;
                }
            }
        }
        return distance;
    }

    public List<BigInteger> subByDistance(SimHash simHash, int distance)
    {
        // 分成几组来检查
        int numEach = this.hashbits / (distance + 1);
        List<BigInteger> characters = new ArrayList<BigInteger>();

        StringBuffer buffer = new StringBuffer();

        for (int i = 0; i < this.intSimHash.bitLength(); i++)
        {
            // 当且仅当设置了指定的位时,返回 true
            boolean sr = simHash.intSimHash.testBit(i);

            if (sr)
            {
                buffer.append("1");
            }
            else
            {
                buffer.append("0");
            }

            if ((i + 1) % numEach == 0)
            {
                // 将二进制转为BigInteger
                BigInteger eachValue = new BigInteger(buffer.toString(), 2);
                buffer.delete(0, buffer.length());
                characters.add(eachValue);
            }
        }

        return characters;
    }

    public static void main(String[] args) throws IOException
    {
        String s = "传统的 hash 算法只负责将原始内容尽量均匀随机地映射为一个签名值,"
                + "原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概 率 下是相等的;"
                + "如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,"
                + "所产生的签名也很可能差别极大。从这个意义 上来 说,要设计一个 hash 算法,"
                + "对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,"
                + "还能额外提供不相等的 原始内容的差异程度的信息。";
        SimHash hash1 = new SimHash(s, 64);

        // 删除首句话,并加入两个干扰串
        s = "原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概 率 下是相等的;"
                + "如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,"
                + "所产生的签名也很可能差别极大。从这个意义 上来 说,要设计一个 hash 算法,"
                + "对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,"
                + "干扰1还能额外提供不相等的 原始内容的差异程度的信息。";
        SimHash hash2 = new SimHash(s, 64);

        // 首句前添加一句话,并加入四个干扰串
        s = "imhash算法的输入是一个向量,输出是一个 f 位的签名值。为了陈述方便,"
                + "假设输入的是一个文档的特征集合,每个特征有一定的权重。"
                + "传统干扰4的 hash 算法只负责将原始内容尽量均匀随机地映射为一个签名值,"
                + "原理上这次差异有多大呢3相当于伪随机数产生算法。产生的两个签名,如果相等,"
                + "说明原始内容在一定概 率 下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,"
                + "因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义 上来 说,"
                + "要设计一个 hash 算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始"
                + "内容是否相等的信息外,干扰1还能额外提供不相等的 原始再来干扰2内容的差异程度的信息。";
        SimHash hash3 = new SimHash(s, 64);

        int dis12 = hash1.getDistance(hash1.strSimHash, hash2.strSimHash);
        System.out.println(hash1.strSimHash);
        System.out.println(hash2.strSimHash);
        System.out.println(dis12);

        System.out.println("============================================");

        int dis13 = hash1.getDistance(hash1.strSimHash, hash3.strSimHash);

        System.out.println(hash1.strSimHash);
        System.out.println(hash3.strSimHash);
        System.out.println(dis13);
    }
}
 

使用simhash以及海明距离判断内容相似程度

标签:

原文地址:http://www.cnblogs.com/jiyuqi/p/4845969.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!