标签:style blog http color os 2014
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie
描述、源码、示例
version 1:普通操作版本
version 2: 泛化操作版本
1.accumulate
描述:计算 init 和 [first, last) 内所有元素的总和
源码:
//version 1
template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init) {
for ( ; first != last; ++first)
init = init + *first;
return init;
}
//version 2
template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init,
BinaryOperation binary_op) {
for ( ; first != last; ++first)
init = binary_op(init, *first);
return init;
}int main()
{
int A[] = {1, 2, 3, 4, 5};
const int N = sizeof(A) / sizeof(int);
cout << "The sum of all elements in A is "
<< accumulate(A, A + N, 0) // 15
<< endl;
cout << "The product of all elements in A is "
<< accumulate(A, A + N, 1, multiplies<int>()) //120
<< endl;
}//version 1
template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init) {
for ( ; first1 != last1; ++first1, ++first2)
init = init + (*first1 * *first2);
return init;
}
//version 2
template <class InputIterator1, class InputIterator2, class T,
class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, T init, BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2) {
for ( ; first1 != last1; ++first1, ++first2)
init = binary_op1(init, binary_op2(*first1, *first2));
return init;
}
int main()
{
int A1[] = {1, 2, 3};
int A2[] = {4, 1, -2};
const int N1 = sizeof(A1) / sizeof(int);
cout << "The inner product of A1 and A2 is "
<< inner_product(A1, A1 + N1, A2, 0) //0
<< endl;
}//version 1
template <class InputIterator, class OutputIterator, class T>
OutputIterator __partial_sum(InputIterator first, InputIterator last,
OutputIterator result, T*) {
T value = *first;
while (++first != last) {
value = value + *first;
*++result = value;
}
return ++result;
}
template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(InputIterator first, InputIterator last,
OutputIterator result) {
if (first == last) return result;
*result = *first;
return __partial_sum(first, last, result, value_type(first));
}
//version 2
template <class InputIterator, class OutputIterator, class T,
class BinaryOperation>
OutputIterator __partial_sum(InputIterator first, InputIterator last,
OutputIterator result, T*,
BinaryOperation binary_op) {
T value = *first;
while (++first != last) {
value = binary_op(value, *first);
*++result = value;
}
return ++result;
}
template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator partial_sum(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op) {
if (first == last) return result;
*result = *first;
return __partial_sum(first, last, result, value_type(first), binary_op);
}int main()
{
const int N = 10;
int A[N];
fill(A, A+N, 1);
cout << "A: ";
copy(A, A+N, ostream_iterator<int>(cout, " ")); // 1 2 3 4 5 6 7 8 9 10
cout << endl;
cout << "Partial sums of A: ";
partial_sum(A, A+N, ostream_iterator<int>(cout, " ")); // 1 3 6 10 15 21 28 36 45 55
cout << endl;
} //version 1
template <class InputIterator, class OutputIterator, class T>
OutputIterator __adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result, T*) {
T value = *first;
while (++first != last) {
T tmp = *first;
*++result = tmp - value;
value = tmp;
}
return ++result;
}
template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result) {
if (first == last) return result;
*result = *first;
return __adjacent_difference(first, last, result, value_type(first));
}
//version 2
template <class InputIterator, class OutputIterator, class T,
class BinaryOperation>
OutputIterator __adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result, T*,
BinaryOperation binary_op) {
T value = *first;
while (++first != last) {
T tmp = *first;
*++result = binary_op(tmp, value);
value = tmp;
}
return ++result;
}
template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op) {
if (first == last) return result;
*result = *first;
return __adjacent_difference(first, last, result, value_type(first),
binary_op);
}int main()
{
int A[] = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
const int N = sizeof(A) / sizeof(int);
int B[N];
cout << "A[]: ";
copy(A, A + N, ostream_iterator<int>(cout, " ")); //1 4 9 16 25 36 49 64 81 100
cout << endl;
adjacent_difference(A, A + N, B);
cout << "Differences: ";
copy(B, B + N, ostream_iterator<int>(cout, " ")); // 3 5 7 9 11 13 15 17 19
cout << endl;
cout << "Reconstruct: ";
partial_sum(B, B + N, ostream_iterator<int>(cout, " ")); //1 4 9 16 25 36 49 64 81 100
cout << endl;
}
// Returns x ** n, where n >= 0. Note that "multiplication"
// is required to be associative, but not necessarily commutative.
template <class T, class Integer, class MonoidOperation>
T power(T x, Integer n, MonoidOperation op) { //这里用的是 Russian Peasant Algorithm
if (n == 0)
return identity_element(op);
else {
while ((n & 1) == 0) {
n >>= 1;
x = op(x, x);
}
T result = x;
n >>= 1;
while (n != 0) {
x = op(x, x);
if ((n & 1) != 0)
result = op(result, x);
n >>= 1;
}
return result;
}
}
template <class T, class Integer>
inline T power(T x, Integer n) {
return power(x, n, multiplies<T>());
}int main() {
cout << "2 ** 30 = " << power(2, 30) << endl; // --> 我编译不通过。说找不到标识符 power ,我已经 include 了 <numeric>
}
template <class ForwardIterator, class T>
void iota(ForwardIterator first, ForwardIterator last, T value) {
while (first != last) *first++ = value++;
}int main()
{
vector<int> V(10);
iota(V.begin(), V.end(), 7);
copy(V.begin(), V.end(), ostream_iterator<int>(cout, " ")); // 7 8 9 10 11 12 13 14 15 16
cout << endl;
}STL 源码剖析 stl_numeric.h,布布扣,bubuko.com
标签:style blog http color os 2014
原文地址:http://blog.csdn.net/zhengsenlie/article/details/37882107