标签:
============================================
matplotlib 绘图基础
============================================
绘图: matplotlib核心剖析
http://www.cnblogs.com/vamei/archive/2013/01/30/2879700.html
Python图表绘制:matplotlib绘图库入门
http://www.cnblogs.com/wei-li/archive/2012/05/23/2506940.html
Basic Use of Matplotlib
这个文章比较多地讲述了marker style和线型设置
http://pythonshell.github.io/python/2013/11/05/Basic-Use-of-Matplotlib/
matplotlib-绘制精美的图表 (HYRY Studio 出品)
http://old.sebug.net/paper/books/scipydoc/matplotlib_intro.html
坐标系的种类:
axis coords (0,0 is lower-left and 1,1 is upper-right)
data coords, data 值的坐标系
figure coords,
============================================
boxplot 绘图
============================================
理解统计学上的boxplot
http://bagrow.com/dsv/LEC07_notes_2014-02-04.html
http://stackoverflow.com/questions/17725927/boxplots-in-matplotlib-markers-and-outliers
理解matplotlib的boxplot
http://blog.bharatbhole.com/creating-boxplots-with-matplotlib/
这篇文章对我的帮助太大了, 它以step by step的方式, 告诉我们如何调教matplotlib绘制boxplot图.
============================================
我的笔记
============================================
matplotlib中boxplot常用的术语:
whiskers, 是指从box 到error bar之间的竖线
fliers, 是指error bar线之外的离散点. 维基上的叫法是 Outliers
caps, 是指error bar横线
boxes, Q1 和 Q3组成的box, 即25分位和75分位.
medians, 是中位值的横线.
means, 是avg的横线.
boxplot() 函数参数:
参数x: data的输入, 格式是: 由vector组成的一个list
参数whis: 用来确定 error bar的位置, 上面的那条error bar的位置等于: Q3 + whis*IQR, 下面的那条error bar的位置等于 Q1-whis*IQR, 其中IQR = interquartile range 即 Q3-Q1, whis缺省值为1.5.
boxplot() 函数还可针对箱线图上每个绘图元素指定的绘图风格, 这些参数有: boxprops,flierprops, medianprops, meanprops,capprops,whiskerprops属性.
每个绘图风格属性都是dict对象, 下面是一个比较完整属性设定,
dict(linestyle=‘solid‘, color=‘blue‘, linewidth=1, marker=‘o‘, markerfacecolor=‘red‘, markeredgecolor=‘black‘, markeredgewidth=3, markersize=12)
如果boxplot()函数不能满足需要的话, 还可以做更多的定制化, 手法是: 设置boxplot()函数的返回对象, 下面以bp作为boxplot()返回对象.
bp.bxpstats属性包含下面几个子属性.
med属性: 中位值.
q1: box的下边界, 即25分位值.
q3: box的上边界, 即75分位值.
whislo: 下面的那条error bar值.
whishi: 上面的那条error bar值.
bp的其他重要属性还有:
boxes, 是25分位值和75分位值构成的box, 每个box是一个Line2D对象, 注意是Line2D对象
medians, 是中位值的横线, 每个median是一个Line2D对象
whiskers, 是指从box 到error bar之间的竖线. 每个whisker是一个Line2D对象
fliers, 是指error bar线之外的离散点. 每个flier是一个Line2D对象
caps, 是指error bar横线. 每个cap是一个Line2D对象
means, 是avg的横线, 每个mean是一个Line2D对象
一旦能访问到这些Line2D对象, 就可以做更多的定制化了, 比如设置线性/颜色等, 因为有了位置信息, 甚至可以派生出其他Line2D对象.
============================================
一个示例
============================================
下面代码是一个定制的boxplot, 定制点有:
1. 绿色的 avg line
2. 需要从最大值连一条线到box顶, 需要从最小值连一条线到box底
3. 画三条水平虚线, 分别是target/UCL/LCL
## numpy is used for creating fake data import numpy as np import matplotlib as mpl ## agg backend is used to create plot as a .png file #mpl.use(‘agg‘) import matplotlib.pyplot as plt ## 初始化raw data以及其他信息 collectn_list = [] # raw data #xtick_labels = [‘Sample%d‘%i for i in range(len(collectn_list))] #y_label =‘y_label‘ #title=‘title‘ #target = 80.0 #ucl=110.0 #lcl=40.0 if not collectn_list: np.random.seed(10) collectn_1 = np.random.normal(100, 10, 20) collectn_2 = np.random.normal(80, 30, 20) collectn_3 = np.random.normal(90, 20, 20) collectn_4 = np.random.normal(70, 25, 20) ## combine these different collections into a list collectn_list =[collectn_1,collectn_2,collectn_3,collectn_4] xtick_labels = [‘Sample%d‘%i for i in range(len(collectn_list))] y_label =‘y_label‘ title=‘title‘ target = 80.0 ucl=110.0 lcl=40.0 data_to_plot = collectn_list # Create a figure instance fig = plt.figure(1, figsize=(9, 6)) ax = fig.add_subplot(1,1,1) #meanprops=dict(linestyle=‘solid‘, color=‘blue‘, linewidth=1, marker=‘o‘, markerfacecolor=‘red‘, markeredgecolor=‘black‘, markeredgewidth=3, markersize=12) # grid on ax.grid(True) # avg line is in green meanprops=dict(linestyle=‘solid‘, color=‘green‘) # hide the default median line medianprops=dict(linestyle=‘solid‘, color=‘white‘) # Create the boxplot bp = ax.boxplot(data_to_plot, meanline=True, showmeans=True, meanprops=meanprops, medianprops=medianprops, showcaps=False) ## extra line from box top to max point, line from box bottom to min point # 注意几个坐标点的求值 for i, collectn in enumerate(collectn_list): percentile_25= np.percentile(collectn, 25, interpolation=b‘linear‘) percentile_75= np.percentile(collectn, 75, interpolation=b‘linear‘) y_max= max(collectn) y_min= min(collectn) medians_org = bp[‘medians‘][i] medians_org_x=medians_org.get_xdata() # array([ 0.8875, 1.1125]) center_x = medians_org_x[0]+(medians_org_x[1]-medians_org_x[0])/2.0 ax.plot([center_x,center_x], [y_min,percentile_25], color=‘blue‘) ax.plot([center_x,center_x], [percentile_75,y_max], color=‘blue‘) ax.set_xticklabels(xtick_labels) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.set_ylabel(y_label) ax.set_title(title) ## add target/UCL/LCL dash line # 注意横线的坐标求值, 和文本的坐标的求值 ax.plot([0,len(collectn_list)+0.5],[target,target], linestyle=‘--‘, color=‘blue‘, linewidth=1) ax.text(len(collectn_list)+0.5,target,"Tgt %.2f"%target,fontsize=10,horizontalalignment=‘right‘) ax.plot([0,len(collectn_list)+0.5],[ucl,ucl], linestyle=‘--‘, color=‘blue‘, linewidth=1) ax.text(len(collectn_list)+0.5,ucl,"UCL %.2f"%ucl,fontsize=10,horizontalalignment=‘right‘) ax.plot([0,len(collectn_list)+0.5],[lcl,lcl], linestyle=‘--‘, color=‘blue‘, linewidth=1) ax.text(len(collectn_list)+0.5,lcl,"LCL %.2f"%lcl,fontsize=10,horizontalalignment=‘right‘) fig.show()
标签:
原文地址:http://www.cnblogs.com/harrychinese/p/matplotlib_basic_and_boxplot.html