标签:
设计函数分别求两个一元多项式的乘积与和。
输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。
输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出0 0
。
4 3 4 -5 2 6 1 -2 0
3 5 20 -7 4 3 1
15 24 -25 22 30 21 -10 20 -21 8 35 6 -33 5 14 4 -15 3 18 2 -6 1
5 20 -4 4 -5 2 9 1 -2 0
1 #include <stdio.h> 2 #include <stdlib.h> 3 typedef struct PolyNode *Polynomial; 4 struct PolyNode 5 { 6 int coef; 7 int expon; 8 struct PolyNode *next; 9 }; 10 11 Polynomial ReadPoly(); 12 void Attach(int c,int e,Polynomial *pReal); 13 Polynomial Add(Polynomial P1,Polynomial P2); 14 Polynomial Mult(Polynomial P1,Polynomial P2); 15 void PrintPoly(Polynomial P); 16 17 int main() 18 { 19 Polynomial P1,P2,PMult,PSum; 20 P1 = ReadPoly(); 21 P2 = ReadPoly(); 22 PMult = Mult(P1,P2); 23 PrintPoly(PMult); 24 PSum = Add(P1,P2); 25 PrintPoly(PSum); 26 return 0; 27 } 28 Polynomial ReadPoly() 29 { 30 Polynomial P,Rear,t; 31 int c,e,N; 32 scanf("%d",&N); 33 P = (Polynomial)malloc(sizeof(struct PolyNode)); 34 P->next = NULL; 35 Rear = P; 36 while(N--){ 37 scanf("%d %d",&c,&e); 38 Attach(c,e,&Rear); 39 } 40 t = P; 41 P = P->next; 42 free(t); 43 return P; 44 } 45 void Attach(int c,int e,Polynomial *pReal) 46 { 47 Polynomial P; 48 P = (Polynomial)malloc(sizeof(struct PolyNode)); 49 P->coef = c; 50 P->expon = e; 51 P->next = NULL; 52 (*pReal)->next = P; 53 *pReal = P; 54 } 55 56 Polynomial Add(Polynomial P1,Polynomial P2) 57 { 58 Polynomial P,t1,t2,t,Rear; 59 if(!P1 && !P2){ 60 if(!P1) 61 return P2; 62 else 63 return P1; 64 } 65 P = (Polynomial)malloc(sizeof(struct PolyNode)); 66 P->next = NULL; 67 Rear = P; 68 t1 = P1; 69 t2 = P2; 70 while(t1 && t2){ 71 if(t1->expon == t2->expon){ 72 if(t1->coef + t2->coef) 73 Attach(t1->coef + t2->coef,t1->expon,&Rear); 74 t1 = t1->next; 75 t2 = t2->next; 76 } 77 else if(t1->expon > t2->expon){ 78 if(t1->coef) 79 Attach(t1->coef,t1->expon,&Rear); 80 t1 = t1->next; 81 } 82 else{ 83 if(t2->coef) 84 Attach(t2->coef,t2->expon,&Rear); 85 t2 = t2->next; 86 } 87 } 88 while(t1){ 89 if(t1->coef) 90 Attach(t1->coef,t1->expon,&Rear); 91 t1 = t1->next; 92 } 93 while(t2){ 94 if(t2->coef) 95 Attach(t2->coef,t2->expon,&Rear); 96 t2 = t2->next; 97 } 98 t = P; 99 P = P->next; 100 free(t); 101 return P; 102 } 103 Polynomial Mult(Polynomial P1,Polynomial P2) 104 { 105 Polynomial P,t1,t2,t,Rear; 106 int c,e; 107 if(!P1 || !P2) 108 return NULL; 109 t1 = P1; 110 t2 = P2; 111 P = (Polynomial)malloc(sizeof(struct PolyNode)); 112 P->next = NULL; 113 Rear = P; 114 while(t2){ 115 if(t1->coef * t2->coef){ 116 Attach(t1->coef * t2->coef,t1->expon + t2->expon,&Rear); 117 } 118 t2 = t2->next; 119 } 120 t1 = t1->next; 121 while(t1){ 122 t2 = P2; 123 Rear = P; 124 while(t2){ 125 e = t1->expon + t2->expon; 126 c = t1->coef * t2->coef; 127 while(Rear->next && Rear->next->expon > e) 128 Rear = Rear->next; 129 if(Rear->next && Rear->next->expon == e){ 130 if(Rear->next->coef + c) 131 Rear->next->coef += c; 132 else{ 133 t = Rear->next; 134 Rear->next = t->next; 135 free(t); 136 } 137 } 138 else{ 139 if(c){ 140 t = (Polynomial)malloc(sizeof(struct PolyNode)); 141 t->coef = c; 142 t->expon = e; 143 t->next = Rear->next; 144 Rear->next = t; 145 Rear = Rear->next; 146 } 147 } 148 t2 = t2->next; 149 } 150 t1 = t1->next; 151 } 152 t2 = P; 153 P = P->next; 154 free(t2); 155 return P; 156 } 157 void PrintPoly(Polynomial P) 158 { 159 int flag = 0; 160 if(!P) 161 printf("0 0"); 162 while(P){ 163 if (!flag) 164 flag = 1; 165 else 166 printf(" "); 167 printf("%d %d", P->coef, P->expon); 168 P = P->next; 169 } 170 printf("\n"); 171 }
需注意的点:需系数为0时的处理!
乘法运算实现方法即多项式逐项相乘的手算方法,将所得单项结果有序插入第一个多项式第一项与第二个多项式所得的多项式P中。
标签:
原文地址:http://www.cnblogs.com/kuotian/p/4850564.html