标签:
Description:
Given an array containing n distinct numbers taken from 0, 1, 2, ..., n
, find the one that is missing from the array.
For example,
Given nums = [0, 1, 3]
return 2
.
Note:
Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity?
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
查找0~n缺失的数。
首先可以先对数组排序,然后线性查找。时间复杂度是O(nlogn + n),不满足题意但是也可以AC。
public class Solution { public int missingNumber(int[] nums) { Arrays.sort(nums); if(nums[0] != 0) { return 0; } for(int i=0; i<nums.length-1; i++) { if(nums[i] + 1 != nums[i+1]) { return nums[i] + 1; } } return nums[nums.length - 1] + 1; } }
如果要求是线性时间复杂度可以以空间换时间。设置一个辅助数组来记录存在的数。时间复杂度是O(n),空间复杂度是O(n)
public class Solution { public int missingNumber(int[] nums) { int[] count = new int[nums.length + 1]; Arrays.fill(count, 0); //0 0 for(int i=0; i<nums.length; i++) { count[nums[i]] = 1; } //0 1 for(int i=0; i<=nums.length; i++) { if(count[i] == 0) { return i; } } return 0; } }
以上两种方法并不完全满足题目要求,题目的最终要求是在线性时间复杂度和常数空间复杂度下完成。可以利用等差数列的求和公式求出0~n的和,然后逐一减去nums中的数剩下的也就是缺失的那个数了。时间复杂度O(n),空间复杂度O(1)。
public class Solution { public int missingNumber(int[] nums) { int n = nums.length; int sum = (1 + n) * n / 2; for(int i=0; i<nums.length; i++) { sum -= nums[i]; } return sum; } }
标签:
原文地址:http://www.cnblogs.com/wxisme/p/4850953.html