标签:
原题:
It is possible to write five as a sum in exactly six different ways:
4 + 1
3 + 2
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
How many different ways can one hundred be written as a sum of at least two positive integers?
翻译:
加和计数
将5写成整数的和有6种不同的方式:
4 + 1
3 + 2
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
将100写成整数的和有多少种不同的方式?
解题思路:
将100能够拆成整数的和能够有多少种?
1.利用动态规划求解
2.利用数的拆分求解<组合数学中有讲解>
数的拆分法
理论基础,链接中讲到了拆分的理论
P(n,k)的意思就是n拆分成k份的数量
有递推公式:
P(n,k)= P(n-1,k-1) + P(n-k,k)
初始值:
k>n时:P(n,k) = 0
对所有的n,P(n,n)=1,P(n,0)=0
也很显然的发现:
对所有的n,P(n,1)=n,P(n,2) = n/2 的向下取整
证明:P(n,k)= P(n-1,k-1) + P(n-k,k)
忘了。。。
求出所以的P(n,k)矩阵
Java程序:
// 整数n 拆分k份 void partitions(){ int limit = 100; int count = 0; int[][] p = new int[limit+1][limit+1]; for(int n=0;n<=limit;n++){ p[n][n] = 1; p[n][1] = 1; p[n][0] = 0; } for(int n=1;n<=limit;n++){ for(int k=1;k<=n;k++){ p[n][k] = p[n-1][k-1] + p[n-k][k]; if(n==limit) count+=p[n][k]; } } count = count - 1; System.out.println(count); }
结果:
// 190569291 // running time=0s0ms
利用递归程序:
void getPar(){ int limit = 100; int count = 0; for(int k=1;k<=limit;k++) count+=Par(100,k); count = count-1; System.out.println(count); } //递归形式 整数n 拆分k分 int Par(int n,int k){ if(k==1||n==k) return 1; if(k>n) return 0; return Par(n-1,k-1)+Par(n-k,k); }
结果:
// 190569291 // running time=1s869ms
递归时间明显长了许多
动态规划求解
//动态规划求解 void dp(){ int limit = 100; int[] ways = new int[limit+1]; ways[0] = 1 ; for(int i=1;i<=limit-1;i++){ for(int j = i;j<=limit;j++) ways[j] += ways[j-i]; } System.out.println(ways[limit]); }
// 190569291 // running time=0s0ms
还看不懂
完整java程序:
package Level3; public class PE076{ void run(){ // dp(); // partitions(); // getPar(); int res = partitions3(100,100); res = res - 1; System.out.println(res); } int partitions3(int n,int m ){ if(n<=1) return 1; if(m>n) return partitions3(n,n); int sum = 0; for(int k=1;k<=m;k++) sum+=partitions3(n-k,k); return sum; } // 190569291 // running time=10s845ms void getPar(){ int limit = 100; int count = 0; for(int k=1;k<=limit;k++) count+=Par(100,k); count = count-1; System.out.println(count); } // 190569291 // running time=1s869ms //递归形式 整数n 拆分k分 int Par(int n,int k){ if(k==1||n==k) return 1; if(k>n) return 0; return Par(n-1,k-1)+Par(n-k,k); } // 整数n 拆分k份 void partitions(){ int limit = 100; int count = 0; int[][] p = new int[limit+1][limit+1]; for(int n=0;n<=limit;n++){ p[n][n] = 1; p[n][1] = 1; p[n][0] = 0; } for(int n=1;n<=limit;n++){ for(int k=1;k<=n;k++){ p[n][k] = p[n-1][k-1] + p[n-k][k]; if(n==limit) count+=p[n][k]; } } count = count - 1; System.out.println(count); // for(int n=1;n<=6;n++){ // for(int k=1;k<=n;k++) // System.out.print(p[n][k]+" "); // System.out.println(); // } // for(int k=0;k<=limit;k++) // count+= p[limit][k]; // count = count - 1; // System.out.println(count); } // 190569291 // running time=0s0ms //动态规划求解 void dp(){ int limit = 100; int[] ways = new int[limit+1]; ways[0] = 1 ; for(int i=1;i<=limit-1;i++){ for(int j = i;j<=limit;j++) ways[j] += ways[j-i]; } System.out.println(ways[limit]); } // 190569291 // running time=0s0ms public static void main(String[] args){ long t0 = System.currentTimeMillis(); new PE076().run(); long t1 = System.currentTimeMillis(); long t = t1 - t0; System.out.println("running time="+t/1000+"s"+t%1000+"ms"); } }
Python实现
动态规划的效率很高
递归的已经不能忍了
import time def PE076(): res = dp(); # res = partitions(100,100) print res def partitions(n,m): # limit = 100 count = 0 if n<=1 : return 1 if m>n : return partitions(n,n) for k in range(1,m+1): count = count + partitions(n-k,k) return count # 190569292 # running time=1073.04099989s def dp(): limit = 100 ways = [0]*(limit+1) ways[0] = 1 for n in range(1,limit): for k in range(n,limit+1): ways[k] +=ways[k-n] return ways[limit] if __name__==‘__main__‘: t0 = time.time() PE076() print "running time={0}s".format((time.time()-t0))
Project Euler 76:Counting summations
标签:
原文地址:http://www.cnblogs.com/theskulls/p/4851958.html