码迷,mamicode.com
首页 > 其他好文 > 详细

减治求有重复元素的全排列

时间:2015-10-09 07:02:37      阅读:269      评论:0      收藏:0      [点我收藏+]

标签:

求n个元素的全排列的所有解可以用减治法:每次拎出一个数做前缀,对剩下的元素再求全排列,直至只剩一个元素。代码源自《算法分析与设计(王晓东)》,复杂度O(n2)

 1 //输出k~m的所有全排列
 2 void perm(int k,int m)
 3 {
 4     if(k==m)
 5     {
 6         for(int i=0;i<=m;i++)
 7             printf("%d ", list[i]);
 8         printf("\n");
 9     }else
10     {
11         for(int i=k;i<=m;i++)
12         {
13             swap(list[k],list[i]);
14             perm(k+1,m);
15             swap(list[k],list[i]);
16         }
17     }
18 }

以上没有考虑有重复元素的情况。简单地想,若有元素重复,则这个元素只需被拎出来做一次前缀就好了,那么只需在拎前缀前判断这个数是否已被拎出来过。

那么如何高效地判断呢?可以先对所有元素排序,这样重复元素分布在相邻位置,一趟扫描,只对与前驱不同的元素做处理。

代码只需在k~m的循环内加一句 if(i>k&&list[i]==list[i-1]) continue;

 

下面再来看一道类似的问题

UVA11076  http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33478

由0~9中n个数字(可重复)组成的数组,把每个全排列看成一个n位数,求所有全排列的和。

根据全排列的性质,将所有全排列按行写出后,发现每一列“所有数字的和s”都相等,因此我们可以只求任一列的和然后进行n次的*10累加。

对于每个数字k,我们已知它在数组中出现的次数cnt[k](即k有cnt[k]-1个副本),但要对一列求和(不妨求第1列),我们需要知道每个数字在这一列出现的次数cnt_2[k]。由于全排列是没有相同的,那么“第1位是k”的次数就等价于“去掉k后剩余元素的全排列的个数”,至此,问题转化为上面的减治法求全排列。

本题只需求全排列个数(值)而不必输出具体排列(解),因此可以用高中排列组合的经典做法:先视为无重复全排,再除以所有重复元素的排列个数。

做完发现此题由于数字是0~9所以天然地把元素排好序并记录好重复次数了,因此对每个数字k只计算一次,计算时将k的个数看作cnt[k]-1即可。

代码如下:

 1 #include <cstdio>
 2 #include <cstring>
 3 using namespace std;
 4 
 5 typedef unsigned long long ULL;
 6 //只有0~9
 7 ULL fac[]={1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600};
 8 int a[13];
 9 int cnt[10];//出现的次数
10 int cnt_2[10];//在所有全排列的任一列中出现的次数
11 ULL sum,ans,s;
12 int n;
13 
14 int main()
15 {
16     while(scanf("%d",&n)&&n)
17     {
18         memset(cnt,0,sizeof(cnt));
19         sum=0;
20         for(int i=0;i<n;i++)
21         {
22             scanf("%d",&a[i]);
23             sum+=a[i];
24             cnt[a[i]]++;
25         }
26         s=0;
27         for(int i=0;i<=9;i++)
28         {//cnt_2[i]等于去掉一个i后无重复全排列的个数
29             if(cnt[i]==0) continue;
30             cnt_2[i]=fac[n-1];
31             for(int j=0;j<=9;j++)
32             {
33                 if(cnt[i]==0) continue;
34                 if(i==j) cnt_2[i]/=fac[cnt[i]-1];
35                 else cnt_2[i]/=fac[cnt[j]];
36             }
37             s+=i*cnt_2[i];
38         }
39         ans=0;
40         for(int i=0;i<n;i++)
41         {
42             ans+=s;
43             s*=10;
44         }
45         printf("%llu\n",ans);
46     }
47     return 0;
48 }

注:之前自己把自己搞晕过,去重实现不了当成是swap的问题,认为简单交换i与k会破坏“重复元素集中分布”或“有序序列”这两个条件,但再分析发现并没什么关系。。。减治啊减治,前缀被拎走就对后缀的全排列没影响了,只要保证每次循环中重复元素不被拎到同一位置就可以。

从问题本身和算法思想出发去分析还是很有意思的~算法知识博大精深,希望自己多练习多积累,早日不再那么水~~~

减治求有重复元素的全排列

标签:

原文地址:http://www.cnblogs.com/helenawang/p/4862782.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!