码迷,mamicode.com
首页 > 其他好文 > 详细

Hat's Fibonacci(大数加法+直接暴力)

时间:2015-10-09 09:17:11      阅读:270      评论:0      收藏:0      [点我收藏+]

标签:

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1250

hdu1250:

Hat‘s Fibonacci

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9442    Accepted Submission(s): 3096


Problem Description
A Fibonacci sequence is calculated by adding the previous two members the sequence, with the first two members being both 1.
F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4)
Your task is to take a number as input, and print that Fibonacci number.
 

 

Input
Each line will contain an integers. Process to end of file.
 

 

Output
For each case, output the result in a line.
 

 

Sample Input
100
 

 

Sample Output
4203968145672990846840663646 Note: No generated Fibonacci number in excess of 2005 digits will be in the test data, ie. F(20) = 66526 has 5 digits.
 

 

Author
戴帽子的
 

 题解,同一般的斐波那契数列来说,最先的我想到了用大数加法和快速幂矩阵的方法来做,但是由于大数乘法的模板是O(n^2)所以超时了,所以考虑只用大数加法的直接暴力方法,由于斐波那契数列增长很快,所以位数不超过2005的前提下最多n 不超过10000,然后就过了,希望看到的大神吗也可以帮我提供一个复杂度小的大数乘法的模板,万分感激 

下面给出ac代码,和用矩阵快速幂tle的代码:

ac代码:

 1 #include <iostream>
 2 #include<cstdio>
 3 #include<string>
 4 #include<cstring>
 5 #include<algorithm>
 6 using namespace std;
 7 string add(string s1,string s2)      
 8 {
 9       string ans = "";
10       int i,j,x,y,k=0;
11       for(i=s1.length()-1,j=s2.length()-1;i>=0 && j>=0 ;i--,j--)
12       {
13          x = s1[i] - 0;
14          y = s2[j] - 0;
15          ans += char((x+y+k)%10 + 0);
16          k = (x+y+k)/10;
17       }
18       while(i>=0)
19       {
20          x=s1[i]-0;
21          ans += char ((x+k)%10 + 0);
22          k = (x+k)/10;
23          i--;
24       }
25       while(j>=0)
26       {
27          y=s2[j]-0;
28          ans += char((y+k)%10 + 0);
29          k = (y+k)/10;
30          j--;
31       }
32       if(k>0)
33       ans += 1;
34       //ans.reverse();
35       reverse(ans.begin(),ans.end());
36       return ans;
37 }
38 string ms1, ms2, ms3, ms4, ms;
39 int main()
40 {
41     int n;
42     while(~scanf("%d",&n))
43     {
44         ms1 = ms2 = ms3 = ms4 = "1";
45         if(n <= 4) {puts("1"); continue;}
46         for(int i = 0; i < n-4; i++)
47         {
48             ms = add(ms1, ms2);
49             ms = add(ms, ms3);
50             ms = add(ms, ms4);
51             ms1 = ms2;
52             ms2 = ms3;
53             ms3 = ms4;
54              ms4 = ms;
55         }
56         cout << ms << endl;
57   }
58      return 0;
59 }

矩阵快速幂tle代码:

  1 #include <iostream>
  2 #include<cstdio>
  3 #include<string>
  4 #include<cstring>
  5 #include<algorithm>
  6 using namespace std;
  7 string add(string s1,string s2)      
  8 {
  9       string ans = "";
 10       int i,j,x,y,k=0;
 11       for(i=s1.length()-1,j=s2.length()-1;i>=0 && j>=0 ;i--,j--)
 12       {
 13          x = s1[i] - 0;
 14          y = s2[j] - 0;
 15          ans += char((x+y+k)%10 + 0);
 16          k = (x+y+k)/10;
 17       }
 18       while(i>=0)
 19       {
 20          x=s1[i]-0;
 21          ans += char ((x+k)%10 + 0);
 22          k = (x+k)/10;
 23          i--;
 24       }
 25       while(j>=0)
 26       {
 27          y=s2[j]-0;
 28          ans += char((y+k)%10 + 0);
 29          k = (y+k)/10;
 30          j--;
 31       }
 32       if(k>0)
 33       ans += 1;
 34       //ans.reverse();
 35       reverse(ans.begin(),ans.end());
 36       return ans;
 37 }
 38 string mul(string s1,string s2)
 39 {   
 40     string ans = "";
 41     int c = 0;
 42     for(int i = s1.length()-1; i >= 0; i--)
 43     {
 44         //计算s1[i]*s2,结果保存在tem中 
 45         string tem = "";
 46         int x = s1[i] - 0,k = 0;//乘数和初始余数 
 47         for(int j = s2.length()-1; j >= 0; j--)
 48         {
 49             int y = s2[j] - 0;
 50             int d = x*y+k; 
 51             tem = char(d%10 + 0) + tem;
 52             k = d/10;
 53         }
 54         if(k)
 55         tem = char(k+0) + tem;
 56         for(int h = 0; h < c; h++)
 57            tem = tem+0;
 58         c++;
 59         //tem计算完毕 
 60         ans = add(ans,tem);
 61     }
 62     return ans;
 63 }
 64 struct mlt{
 65     string a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
 66     void out (){
 67         printf("%s %s %s %s\n", a1.c_str(), a2.c_str(), a3.c_str(), a4.c_str());
 68         printf("%s %s %s %s\n", b1.c_str(), b2.c_str(), b3.c_str(), b4.c_str());
 69         printf("%s %s %s %s\n", c1.c_str(), c2.c_str(), c3.c_str(), c4.c_str());
 70         printf("%s %s %s %s\n", d1.c_str(), d2.c_str(), d3.c_str(), d4.c_str());
 71     }
 72     mlt operator * (const mlt m) const
 73     {
 74         mlt tm;
 75         tm.a1 = add(add(add(mul(a1,m.a1),mul(a2,m.b1)),mul(a3,m.c1)),mul(a4,m.d1));    
 76         tm.a2 = add(add(add(mul(a1,m.a2),mul(a2,m.b2)),mul(a3,m.c2)),mul(a4,m.d2));
 77         tm.a3 = add(add(add(mul(a1,m.a3),mul(a2,m.b3)),mul(a3,m.c3)),mul(a4,m.d3));
 78         tm.a4 = add(add(add(mul(a1,m.a4),mul(a2,m.b4)),mul(a3,m.c4)),mul(a4,m.d4));
 79         tm.b1 = add(add(add(mul(b1,m.a1),mul(b2,m.b1)),mul(b3,m.c1)),mul(b4,m.d1));    
 80         tm.b2 = add(add(add(mul(b1,m.a2),mul(b2,m.b2)),mul(b3,m.c2)),mul(b4,m.d2));
 81         tm.b3 = add(add(add(mul(b1,m.a3),mul(b2,m.b3)),mul(b3,m.c3)),mul(b4,m.d3));
 82         tm.b4 = add(add(add(mul(b1,m.a4),mul(b2,m.b4)),mul(b3,m.c4)),mul(b4,m.d4));
 83         tm.c1 = add(add(add(mul(c1,m.a1),mul(c2,m.b1)),mul(c3,m.c1)),mul(c4,m.d1));    
 84         tm.c2 = add(add(add(mul(c1,m.a2),mul(c2,m.b2)),mul(c3,m.c2)),mul(c4,m.d2));
 85         tm.c3 = add(add(add(mul(c1,m.a3),mul(c2,m.b3)),mul(c3,m.c3)),mul(c4,m.d3));
 86         tm.c4 = add(add(add(mul(c1,m.a4),mul(c2,m.b4)),mul(c3,m.c4)),mul(c4,m.d4));
 87         tm.d1 = add(add(add(mul(d1,m.a1),mul(d2,m.b1)),mul(d3,m.c1)),mul(d4,m.d1));    
 88         tm.d2 = add(add(add(mul(d1,m.a2),mul(d2,m.b2)),mul(d3,m.c2)),mul(d4,m.d2));
 89         tm.d3 = add(add(add(mul(d1,m.a3),mul(d2,m.b3)),mul(d3,m.c3)),mul(d4,m.d3));
 90         tm.d4 = add(add(add(mul(d1,m.a4),mul(d2,m.b4)),mul(d3,m.c4)),mul(d4,m.d4));    
 91     return tm;
 92     }
 93 };
 94 string qkmul(int n)
 95 {
 96     mlt flag;
 97     flag.a1 = flag.a2 = flag.a3 = flag.a4 = flag.b1 = flag.c2 = flag.d3 ="1";
 98     flag.b2 = flag.b3 = flag.b4 = flag.c1 = flag.c3 = flag.c4 = flag.d1 = flag.d2 = flag.d4 = "0" ;
 99     n = n-4;
100     mlt ret; ret.a1 = ret.b2 = ret.c3 = ret.d4 = "1";
101     ret.a2 = ret.a3 = ret.a4 = ret.b1 = ret.b3 = ret.b4 = ret.c1 = ret.c2 = ret.c4 = ret.d1 = ret.d2 = ret.d3 = "0";
102     while(n!=0)
103     {
104         if(n%2==1)
105             ret = ret*flag;
106         n/=2;
107         flag = flag*flag;
108     }
109     //flag.out();
110     flag = ret;
111     string ss = "";
112     ss = add(add(add(flag.a1,flag.a2),flag.a3),flag.a4);
113     return ss;
114 }
115 
116 int main()
117 {
118     int n;
119     while(~scanf("%d",&n))
120     {
121         string sss = qkmul(n);
122         cout<<sss<<endl;
123      }
124      return 0;
125 }

注明: 一般的斐波那契在n不是很大的情况可以直接用暴力的方法就可以解决了。

 

Hat's Fibonacci(大数加法+直接暴力)

标签:

原文地址:http://www.cnblogs.com/shanyr/p/4862861.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!