码迷,mamicode.com
首页 > 其他好文 > 详细

二分法查找

时间:2015-10-09 21:16:31      阅读:170      评论:0      收藏:0      [点我收藏+]

标签:

  当数据量很大适宜采用该方法。采用二分法查找时,数据需是排好序的。主要思想是:(设查找的数组区间为array[low, high])(1)确定该期间的中间位置K(2)将查找的值T与array[k]比较。若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。区域确定如下:a.array[k]>T 由数组的有序性可知array[k,k+1,……,high]>T;故新的区间为array[low,……,K-1]b.array[k]<T 类似上面查找区间为array[k+1,……,high]。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间缩小一半。递归找,即可,时间复杂度:O(log2n)。

  假如有一组数为3,12,24,36,55,68,75,88要查给定的值24.可设三个变量front,mid,end分别指向数据的上界,中间和下界,mid=(front+end)/2.
 
  1.开始令front=0(指向3),end=7(指向88),则mid=3(指向36)。因为mid>x,故应在前半段中查找。
 
  2.令新的end=mid-1=2,而front=0不变,则新的mid=1。此时x>mid,故确定应在后半段中查找。
 
  3.令新的front=mid+1=2,而end=2不变,则新的mid=2,此时a[mid]=x,查找成功。
 
  如果要查找的数不是数列中的数,例如x=25,当第三次判断时,x>a[mid],按以上规律,令front=mid+1,即front=3,出现front>end的情况,表示查找不成功。
 
  例:在有序的有N个元素的数组中查找用户输进去的数据x。
 
算法如下:
  1.确定查找范围front=0,end=N-1,计算中项mid=(front+end)/2。
 
  2.若a[mid]=x或front>=end,则结束查找;否则,向下继续。
 
  3.若a[mid]<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给front,并重新计算mid,转去执行步骤2;若a[mid]>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给end,并重新计算mid,转去执行步骤2。
 
[一维数组,折半查找]
 
Java代码:
 1 public class BubbleTest
 2 {
 3 public static int binary(int[] array, int value)
 4 {
 5 int low = 0;
 6 int high = array.length - 1;
 7 while(low <= high)
 8 {
 9 int middle = (low + high) / 2;
10 if(value == array[middle])
11 {
12 return middle;
13 }
14 if(value > array[middle])
15 {
16 low = middle + 1;
17 }
18 if(value < array[middle])
19 {
20 high = middle - 1;
21 }
22 }
23 return -1;
24 }
25 public static void main(String[] args)
26 {
27 int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9};
28 int value = binary(a, 9);
29 System.out.println(value);
30 }
31 }

 

二分法查找

标签:

原文地址:http://www.cnblogs.com/dirgo/p/4864908.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!