标签:
牛顿迭代法:
牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
牛顿迭代公式:
设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f‘(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f‘(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f‘(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f‘(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。
牛顿迭代法求平方根:
求平方根在牛顿迭代公式中,f(x)=x^2-a,则f‘(x)=2x。以上的牛顿迭代公式变为:x(n+1)=x(n)-(x(n)^2-a)/2x,即(x(n)+a/x(n))/2。我们随便猜一个数r,假设r是f(x)=0的根,经过几次牛顿迭代公式后(以上的公式)所得到的x值即是f(x)=0的根或者其非常精确的近似值。
例如:我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了:
( 4 + 2/4 ) / 2 = 2.25
( 2.25 + 2/2.25 ) / 2 = 1.56944..
( 1.56944..+ 2/1.56944..) / 2 = 1.42189..
( 1.42189..+ 2/1.42189..) / 2 = 1.41423..
盗图一张以作说明,图片来自http://www.2cto.com/kf/201206/137256.html。
..
程序实现:
#include<iostream>
#include<math.h>
using namespace std;
double sqrtNT(double a,double b)
{
double x,last;
x=b;
if(a<=0)
{
return a;
}
while(x*x!=a&&(abs(last-x)>0.0000001))
{
last=x;
x=(x+a/x)/2;
}
return x;
}
int main()
{
cout<<sqrtNT(93273,5)<<endl;
return 0;
}
标签:
原文地址:http://www.cnblogs.com/shrimp-can/p/4868343.html