码迷,mamicode.com
首页 > 其他好文 > 详细

sqrt()平方根计算函数的实现2——牛顿迭代法

时间:2015-10-11 14:00:09      阅读:495      评论:0      收藏:0      [点我收藏+]

标签:

牛顿迭代法:

      牛顿迭代法又称为牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。

牛顿迭代公式:

     设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f‘(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f‘(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f‘(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f‘(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式

牛顿迭代法求平方根:

     求平方根在牛顿迭代公式中,f(x)=x^2-a,则f‘(x)=2x。以上的牛顿迭代公式变为:x(n+1)=x(n)-(x(n)^2-a)/2x,即(x(n)+a/x(n))/2。我们随便猜一个数r,假设r是f(x)=0的根,经过几次牛顿迭代公式后(以上的公式)所得到的x值即是f(x)=0的根或者其非常精确的近似值。

例如:我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了:
      ( 4  + 2/4 ) / 2 = 2.25
      ( 2.25 + 2/2.25 ) / 2 = 1.56944..
      ( 1.56944..+ 2/1.56944..) / 2 = 1.42189..
      ( 1.42189..+ 2/1.42189..) / 2 = 1.41423..

盗图一张以作说明,图片来自http://www.2cto.com/kf/201206/137256.html。

..技术分享

 

程序实现:

#include<iostream>

#include<math.h>

using namespace std;

double sqrtNT(double a,double b)

{

       double x,last;

       x=b;

       if(a<=0)

       {

              return a;

       }

       while(x*x!=a&&(abs(last-x)>0.0000001))

       {

              last=x;

              x=(x+a/x)/2;

       }

       return x;

}

int main()

{

       cout<<sqrtNT(93273,5)<<endl;

       return 0;

}

sqrt()平方根计算函数的实现2——牛顿迭代法

标签:

原文地址:http://www.cnblogs.com/shrimp-can/p/4868343.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!