标签:
题意:
给定一个火柴棒拼成的方格阵,然后去掉一些火柴棒,问至少再去掉几根火柴棒能够让图中一个正方形都没有。
思路:
1. 由于题目中给定了 n 的范围,2 * n * (n + 1) <= 60 -> 所以能够保证所有的火柴用 long long的位运算表示;
2. 启发式函数 h 的计算需要考量:如果删除了某个方阵的一个边,则能够保证 h(s1) <= h(s2) + C(s1, s2),其中 C(s1, s2) = 1,h(s1) - h(s2) <= 1;
3. 各种位运算的范围要明确,如 1<<i 前面要加上long long 修饰方能得到正确的结果
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int INFS = 0x7fffffff;
int N,C,E,bound;
long long squ[100],xiao[6][6];
bool flag;
long long get2(int i)
{
return ((long long)1<<(i-1));
}
int getnumber1(int i,int j)
{
return (2*N+1)*(i-1)+j;
}
int getnumber2(int i,int j)
{
return (2*N+1)*(i-1)+j+N;
}
void build()
{
C=0;
memset(xiao,0,sizeof(xiao));
int i,j;
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
{
xiao[i][j]|=get2(getnumber1(i,j))|get2(getnumber1(i+1,j));
xiao[i][j]|=get2(getnumber2(i,j))|get2(getnumber2(i,j+1));
squ[C++]=xiao[i][j];
}
for(int size=2;size<=N;size++)
{
for(i=1;i+size-1<=N;i++)
{
for(j=1;j+size-1<=N;j++)
{
squ[C]=0;
for(int a=0;a<size;a++)
{
for(int b=0;b<size;b++)
{
squ[C]^=xiao[i+a][j+b];;
}
}
C++;
}
}
}
}
int dfs(long long state,int de)
{
int h=0;
long long u=0,s=state;
for(int i=0;i<C;i++)
{
if((s&squ[i])==squ[i])
{
h+=1;
s^=squ[i];
if(u==0)
u=squ[i];
}
}
if(h==0)
{
flag=true;
return de;
}
if(de+h>bound)
return de+h;
int news=INFS;
for(int i=1;i<=E;i++)
{
if(u&get2(i))
{
int b=dfs(state^get2(i),de+1);
if(flag)
return b;
news=min(b,news);
}
}
return news;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&N);
build();
E=2*N*(N+1);
int k;
long long state=((long long)1<<E)-1;
scanf("%d",&k);
for(int i=0;i<k;i++)
{
int x;
scanf("%d",&x);
state^=get2(x);
}
flag=false;
bound=0;
while(!flag)
{
bound=dfs(state,0);
}
printf("%d\n",bound);
}
}
标签:
原文地址:http://www.cnblogs.com/137033036-wjl/p/4871061.html