码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 1330 Nearest Common Ancestors(LCA模板)

时间:2015-10-12 15:44:07      阅读:185      评论:0      收藏:0      [点我收藏+]

标签:

给定一棵树求任意两个节点的公共祖先

tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断。如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果访问过的话,那么它的最近公共祖先就是当前节点祖先。

下面是tarjan离线模板:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 10010;

struct Edge {
    int to, next;
}edge[maxn * 2];
//查询 
struct Query {
    int q, next;
    int index;
}query[maxn * 2];

int tot, head[maxn];
//查询的前向星 
int cnt, h[maxn];
//查询的答案保存在ans中 
int ans[maxn * 2];
int fa[maxn];//并查集 
int r[maxn];//并查集集合个数 
int ancestor[maxn];//祖先 
bool vis[maxn];//访问标记 
int Q;//查询总数 
void init(int n)
{
    tot = 0;
    cnt = 0;
    Q = 0;
    memset(h, -1, sizeof(h));
    memset(head, -1, sizeof(head));
    memset(fa, -1, sizeof(fa));
    memset(ancestor, 0, sizeof(ancestor));
    memset(vis, false, sizeof(vis));
    for (int i = 1; i <= n; i++) r[i] = 1;
}
void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}
void addquery(int u, int v, int index)
{
    query[cnt].q = v;
    query[cnt].index = index;
    query[cnt].next = h[u];
    h[u] = cnt++;
}
int find(int x)
{
    if (fa[x] == -1) return x;
    return fa[x] = find(fa[x]);
}
void Union(int x, int y)
{
    int t1 = find(x);
    int t2 = find(y);
    if (t1 != t2)
    {
        if (t1 < t2)
        {
            fa[t1] = t2;
            r[t2] += r[t1];
        }
        else
        {
            fa[t2] = t1;
            r[t1] += r[t2];
        }
    }
}
void LCA(int u)//tarjan离线算法 
{
    vis[u] = true;
    ancestor[u] = u;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        if (vis[v]) continue;
        LCA(v);
        Union(u, v);
        ancestor[find(u)] = u;
    }
    for (int i = h[u]; i != -1; i = query[i].next)
    {
        int v = query[i].q;
        if (vis[v])
        {
            ans[query[i].index] = ancestor[find(v)];
        }
    }
}
bool in[maxn];
int main()
{
    int T, n;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d", &n);
        init(n);
        memset(in, false, sizeof(in));
        int u, v;
        for (int i = 1; i < n; i++)
        {
            scanf("%d %d", &u, &v);
            in[v] = true;
            addedge(u, v);
            addedge(v, u);
        }
        scanf("%d %d", &u, &v);
        addquery(u, v, Q);//添加查询 
        addquery(v, u, Q++);
        int root;
        for (int i = 1; i <= n; i++) 
        {
            if (!in[i])
            {
                root = i;
                break;
            }
        }
        LCA(root);
        for (int i = 0; i < Q; i++)//按照顺序打印出来答案 
            printf("%d\n", ans[i]);
    }
    return 0;
}

RMQ&LCA在线模板:

RMQ st算法是用来求一段连续的区间最值问题的,如果将树看成一个线性结构,那么它可以快速求出一段区间的最值,那么就可以利用它求出LCA,首先求出一个树的欧拉序列(就是dfs序),然后每个节点都有深度,都有到根节点的距离。保存一个第一次访问到某个节点的编号。这样求两个点的LCA就是求从欧拉序列当中的一段到另外一段(连续的)深度的最小值。直接RMQ就可以了。模板如下:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>

using namespace std;
typedef long long ll;
const int maxn = 20010;
int tot, head[maxn];
struct Edge {
    int to, next;
}edge[maxn];
int occur[maxn];
int first[maxn];
int dep[maxn];
bool vis[maxn];
int m;
void init()
{
    tot = 0;
    memset(head, -1, sizeof(head));
    memset(vis, false, sizeof(vis));
    memset(first, 0, sizeof(first));
    m = 0;
}
void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}
void dfs(int u, int depth)
{
    occur[++m] = u;
    dep[m] = depth;
    if (!first[u])
        first[u] = m;
    for (int i = head[u]; i != -1; i = edge[i].next)
    {
        int v = edge[i].to;
        dfs(v, depth + 1);
        occur[++m] = u;
        dep[m] = depth;
    }
}
int Rmin[maxn * 2][32];
void RMQ(int n)
{
    for (int i = 1; i <= n; i++)
        Rmin[i][0] = i;
    int k = (int)log2(n);
    for (int j = 1; j <= k; j++)
    {
        for (int i = 1; i + (1 << j) - 1 <= n; i++)
            Rmin[i][j] = dep[Rmin[i][j - 1]] < dep[Rmin[i + (1 << (j - 1))][j - 1]] ? Rmin[i][j - 1] : Rmin[i + (1 << (j - 1))][j - 1];
    }
}
int query(int a, int b)
{
    int l = first[a], r = first[b];
    if (l > r)
        swap(l, r);
    int k = (int)log2(r - l + 1);
    int tmp = dep[Rmin[l][k]] < dep[Rmin[r - (1 << k) + 1][k]] ? Rmin[l][k] : Rmin[r - (1 << k) + 1][k];
    return occur[tmp];
}
int main()
{
    int T, n;
    scanf("%d", &T);
    while (T--)
    {
        init();
        scanf("%d", &n);
        int a, b;
        for (int i = 1; i < n; i++)
        {
            scanf("%d %d", &a, &b);
            addedge(a, b);
            vis[b] = true;
        }
        int root;
        for (int i = 1; i <= n; i++)
        {
            if (!vis[i])
            {
                root = i;
                break;
            }
        }
        dfs(root, 1);
        scanf("%d %d", &a, &b);
        RMQ(m);
        printf("%d\n", query(a, b));
    }
    return 0;
}

 

POJ 1330 Nearest Common Ancestors(LCA模板)

标签:

原文地址:http://www.cnblogs.com/Howe-Young/p/4871821.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!