码迷,mamicode.com
首页 > 其他好文 > 详细

poj_2553 强连通分支&出度为0的点

时间:2015-10-12 22:35:52      阅读:228      评论:0      收藏:0      [点我收藏+]

标签:

题目大意

    N个点的有向图中,定义“好点”为: 
从该点v出发可以到达的所有点u,均有一条路径使得u可达v。 
求出图中所有的“好点”,并按照顺序从小到大输出出来。

题目分析

    图存在多个强连通分支,强连通分支内的所有点的行为可以视为一个点的行为:若强连通分支可以到达其他强连通分支,则该强连通分支内的所有点均可以到达其他分支;若强连通分支可以被其他点到达,则该强连通分支内的所有点均可以被其他点到达。因此,将图的强连通分支缩成一个点是一个经常会进行的操作 
    将强连通分支缩成一个点之后,形成一个有向无环图。在有向无环图中,出度为0的点所代表的强连通分支,显然满足“好点”的要求;而出度不为0的点,显然存在它可以到达的点,但这些点不能到达它,故不满足“好点”的要求。因此,“好点”就是出度为0的点代表的强连通分支内的点。

实现(c++)

#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<set>
using namespace std;
#define MAX_NODE 5005
#define min(a, b) a < b? a:b
#define max(a, b) a > b? a:b

vector<int> gGraph[MAX_NODE];
stack<int> gStack;
int gDfn[MAX_NODE];
int gLow[MAX_NODE];

bool gVisited[MAX_NODE];
bool gInStack[MAX_NODE];
int gClusterOfNode[MAX_NODE];
int gIndex;
int gClusterIndex;

//Tarjan算法求强连通分支
void Tarjan(int u){
	gDfn[u] = gLow[u] = ++gIndex;
	gInStack[u] = true;
	gVisited[u] = true;
	gStack.push(u);

	for (int i = 0; i < gGraph[u].size(); i++){
		int v = gGraph[u][i];
		if (!gVisited[v]){
			Tarjan(v);
			gLow[u] = min(gLow[u], gLow[v]);
		}
		else if (gInStack[v]){
			gLow[u] = min(gLow[u], gDfn[v]);
		}
	}
	if (gDfn[u] == gLow[u]){
		int v;
		do{
			v = gStack.top();
			gStack.pop();
			gInStack[v] = false;
			gClusterOfNode[v] = gClusterIndex;
		} while (v != u);
		++gClusterIndex;
	}
}
vector<set<int> >gLinkFrom;	//每个强连通分支,入点集合	
vector<set<int> > gLinkTo;	//每个强连通分支,出点集合
void ReconstructGraph(int nodes, int clusters){
	gLinkFrom.clear();
	gLinkFrom.resize(clusters);
	gLinkTo.clear();
	gLinkTo.resize(clusters);

	for (int u = 1; u <= nodes; u++){
		for (int i = 0; i < gGraph[u].size(); i++){
			int v = gGraph[u][i];
			int uc = gClusterOfNode[u];
			int vc = gClusterOfNode[v];
			if (uc != vc){	//注意!!!
				gLinkTo[uc].insert(vc);
				gLinkFrom[vc].insert(uc);
			}
		}
	}
}

int main(){
	int n, r;
	while (scanf("%d", &n) && n != 0){

		scanf("%d", &r);

		for (int i = 0; i <= n; i++){
			gGraph[i].clear();
		}

		int u, v;
		for (int i = 0; i < r; i++){
			scanf("%d %d", &u, &v);
			gGraph[u].push_back(v);
		}

		memset(gVisited, false, sizeof(gVisited));
		memset(gInStack, false, sizeof(gInStack));
		gIndex = gClusterIndex = 0;
		for (int i = 1; i <= n; i++){
			if (!gVisited[i])
				Tarjan(i);
		}

		
		ReconstructGraph(n, gClusterIndex);	//将染色后的图进行重构(即设置强连通分支)

		set<int> zero_outdegree_cluster_id;	//出度为0的强连通分支的集合
		for (int i = 0; i < gClusterIndex; i++){	
			if (gLinkTo[i].empty()){	//出度为0,强连通分支
				zero_outdegree_cluster_id.insert(i);
			}
		}

		//遍历每个点,判断其是否属于那些出度为0的强连通分支
		for (int u = 1; u <= n; u++){
			if (zero_outdegree_cluster_id.find(gClusterOfNode[u]) != zero_outdegree_cluster_id.end()){
				printf("%d ", u);
			}
		}

		printf("\n");
	}
	return 0;
}

 

poj_2553 强连通分支&出度为0的点

标签:

原文地址:http://www.cnblogs.com/gtarcoder/p/4872946.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!