码迷,mamicode.com
首页 > 其他好文 > 详细

Jacobian矩阵和Hessian矩阵

时间:2015-10-12 22:38:18      阅读:282      评论:0      收藏:0      [点我收藏+]

标签:

1.Jacobian矩阵

在矩阵论中,Jacobian矩阵是一阶偏导矩阵,其行列式称为Jacobian行列式。假设 函数 $f:R^n \to R^m$, 输入是向量 $x \in R^n$ ,输出为向量 $f(x) \in R^m$ ,那么对应的Jacobian矩阵 $J$ 是一个 $m*n$ 的矩阵,其定义如下:

\[\mathbf J = \frac{d\mathbf f}{d\mathbf x} = \begin{bmatrix}\dfrac{\partial \mathbf{f}}{\partial x_1} & \cdots & \dfrac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix}= \begin{bmatrix}\dfrac{\partial f_1}{\partial x_1} & \cdots & \dfrac{\partial f_1}{\partial x_n}\\
    \vdots & \ddots & \vdots\\
    \dfrac{\partial f_m}{\partial x_1} & \cdots & \dfrac{\partial f_m}{\partial x_n} \end{bmatrix}\]

或者,也可以记作:

\[\mathbf J_{i,j} = \frac{\partial f_i}{\partial x_j} .\]

 

2.Hessian矩阵

假设函数 $f:R^n \to R$ 的输入 $x\in R^n$,输出 $f(x)\in R$。如果函数$f$的二阶偏导全部存在,并在定义域内连续,那么函数$f$的Hessian矩阵$H$

Jacobian矩阵和Hessian矩阵

标签:

原文地址:http://www.cnblogs.com/ZJUT-jiangnan/p/4872962.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!