标签:
http://poj.org/problem?id=3253
Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000) planks of wood, each having some integer length Li (1 ≤ Li ≤ 50,000) units. He then purchases a single long board just long enough to saw into the Nplanks (i.e., whose length is the sum of the lengths Li). FJ is ignoring the "kerf", the extra length lost to sawdust when a sawcut is made; you should ignore it, too.
FJ sadly realizes that he doesn‘t own a saw with which to cut the wood, so he mosies over to Farmer Don‘s Farm with this long board and politely asks if he may borrow a saw.
Farmer Don, a closet capitalist, doesn‘t lend FJ a saw but instead offers to charge Farmer John for each of the N-1 cuts in the plank. The charge to cut a piece of wood is exactly equal to its length. Cutting a plank of length 21 costs 21 cents.
Farmer Don then lets Farmer John decide the order and locations to cut the plank. Help Farmer John determine the minimum amount of money he can spend to create the N planks. FJ knows that he can cut the board in various different orders which will result in different charges since the resulting intermediate planks are of different lengths.
Line 1: One integer N, the number of planks
Lines 2..N+1: Each line contains a single integer describing the length of a needed plank
Line 1: One integer: the minimum amount of money he must spend to make N-1 cuts
3
8
5
8
34
哈弗曼编码,注意结果爆int要用long long。。
#include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<string> #include<queue> #include<set> using std::set; using std::sort; using std::pair; using std::swap; using std::string; using std::priority_queue; #define pb(e) push_back(e) #define sz(c) (int)(c).size() #define mp(a, b) make_pair(a, b) #define all(c) (c).begin(), (c).end() #define iter(c) decltype((c).begin()) #define cls(arr, val) memset(arr, val, sizeof(arr)) #define cpresent(c, e) (find(all(c), (e)) != (c).end()) #define rep(i, n) for(int i = 0; i < (int)n; i++) #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i) const int N = 20010; const int INF = ~0u>>1; typedef long long ll; struct Node { ll dat, w; Node *ch[2]; Node() {} Node(ll _dat_, ll _w_, Node *l = NULL, Node *r = NULL) { dat = _dat_, w = _w_; ch[0] = l, ch[1] = r; } Node(const Node &x) { dat = x.dat, w = x.w; ch[0] = x.ch[0], ch[1] = x.ch[1]; } inline bool operator<(const Node &x) const { return w > x.w; } }A[N]; struct Hoffmancode { ll sum; Node *root; priority_queue<Node> q; inline void solve(int n) { ll v; sum = 0; rep(i, n) { scanf("%lld", &v); A[i] = Node(v, v); q.push(A[i]); } CreateHoffmanTree(); CreateHoffmanCode(root, ""); printf("%lld\n", sum); } inline void CreateHoffmanTree() { Node *l = NULL, *r = NULL; while (!q.empty() && q.size() != 1) { l = new Node(q.top()); q.pop(); r = new Node(q.top()); q.pop(); q.push(Node(INF, l->w + r->w, l, r)); } if (1 == q.size()) { root = new Node(q.top()); q.pop(); } } inline void CreateHoffmanCode(Node *x, string s) { if (!x) return; if (x->dat != INF) { sum += x->dat * s.length(); } CreateHoffmanCode(x->ch[0], s + ‘0‘); CreateHoffmanCode(x->ch[1], s + ‘1‘); } }work; int main() { #ifdef LOCAL freopen("in.txt", "r", stdin); freopen("out.txt", "w+", stdout); #endif int n; while (~scanf("%d", &n)) { work.solve(n); } return 0; }
标签:
原文地址:http://www.cnblogs.com/GadyPu/p/4876096.html